f
首页 | 客服

王老师初中数学

欢迎登录德优题库!

登录/注册 | 通知 | 退出
(1)

服务热线

400-816-0029

    自建题库,共享分红

德优题库QQ交流群

6345. (2017•永春三中•模拟) (1)如图①,已知BD为矩形ABCD的对角线,请作出点A到BD最短距离.
(2)如图②,在四边形ABCD中,AD∥BC,AD⊥CD,矩形EMQG为△ABC的一个内接矩形,EG交DB于点F,过点F作AN⊥BC于点N,延长GE交DC于点P,则四边形PCNF的面积与四边形EMQG的面积有什么关系?请说明理由.
(3)如图③,在△ABC,AC=4,BC=6,∠ACB=30°,矩形EMQG是△ABC的一个内接矩形(点M、Q在边BC上,点E、G分别在边AC、AB上).请在图③中画出对角线MG最短的矩形EMQG,请说明理由,并求出此时MG的长.
德优题库
[考点]
垂线段最短   点到直线的距离   勾股定理   平行线分线段成比例   相似三角形的判定与性质   四边形综合题   
[答案]
答案详见解析
[解析]
解:(1)如图1中,作AHBDH,线段AH即为所求;


(2)如图2中,结论:四边形PCNF的面积与四边形EMQG的面积相等.

由题意ADPGBC
CPCDBGBAPEADCPCDFGADBGAB
PEADFGAD
PEFG
PFEG
PCEM
∴四边形PCNF的面积与四边形EMQG的面积相等.

(3)如图3中,作ARBCCRBC,连接BR,作CHBRH,过点HPHBCRCPACEABG.作HQBCQEMBCMGNBCN

由(2)可知四边形PCHQ≌四边形EMNG
则四边形DEFG是矩形,此时矩形的对角线最短.(CH是垂线段,垂线段最短,易证MGCH,故此时矩形的对角线MG最短).
在Rt△ACR中,AC=4,∠ACNCAR=30°,
CRAC=2,
中Rt△BCR中,BR=2
CRCBRBCH
CH
MGCH
[点评]
本题考查了"垂线段最短   点到直线的距离   勾股定理   四边形综合题   平行线分线段成比例   相似三角形的判定与性   ",属于"压轴题",熟悉知识点是解题的关键
45255. (2024•汇知中学•七下一月) 如图所示,修一条路将A,B两村庄与公路MN连起来,怎样修才能使所修的公路最短?画出线路图,并说明理由.
德优题库
时间:2024-11-25 难度:3 相似度:1.17
27864. (2023•爱知中学•九上期末) 【问题探究】
(1)如图1,在矩形ABCD中,AB=4,点E、F分别为边AD、BC上的点,且AE=1,BF=2,P为边AB上一动点,连接EP、PF,则EP+PF的最小值为        
(2)如图2,在矩形ABCD中,AB=4,BC=8,点E、F分别在边AD和BC上,连接AC,EF⊥AC于M,求EF的长.
【问题解决】
(3)某市进行绿化改造,美化生态环境.如图3,将一块四边形的空地ABCD改造成了供市民休闲锻炼的公园.已知:在四边形ABCD中,AB∥CD,∠C=90°,tan∠CDA=2,BC=60米,AB=110米,在公园的AD边上有一个出口M,经测量MD=2MA,为了方便市民,现计划在公园的AB边和CD边上分别建一个休息亭F和E,然后铺设观景道BE、EF、FM,并且EF⊥BM,若要使这三条观景道的距离和最小(即BE+EF+FM最小),请求出休息亭F距离点A多远?并求出BE+EF+FM的最小值.(小路面积忽略不计,结果保留根号)
德优题库
时间:2024-10-17 难度:1 相似度:1.17
811. (2015•陕西省•真题) 如图,在每一个四边形ABCD中,均有AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12.
(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为      
(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值;
(3)如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC的值最小?若存在,求出此时cos∠BPC的值;若不存在,请说明理由.
时间:2021-02-03 难度:5 相似度:1.17
1052. (2019•陕西省•真题) 问题提出:
1)如图1,已知△ABC,试确定一点D,使得以ABCD为顶点的四边形为平行四边形,请画出这个平行四边形;
问题探究:
2)如图2,在矩形ABCD中,AB4BC10,若要在该矩形中作出一个面积最大的△BPC,且使∠BPC90°,求满足条件的点P到点A的距离;
问题解决:
3)如图3,有一座塔A,按规定,要以塔A为对称中心,建一个面积尽可能大的形状为平行四边形的景区BCDE.根据实际情况,要求顶点B是定点,点B到塔A的距离为50米,∠CBE120°,那么,是否可以建一个满足要求的面积最大的平行四边形景区BCDE?若可以,求出满足要求的平行四边形BCDE的最大面积;若不可以,请说明理由.(塔A的占地面积忽略不计)
时间:2021-03-01 难度:5 相似度:1.17
882. (2013•陕西省•真题) 问题探究:
(1)请在图①中作出两条直线,使它们将圆面四等分;
(2)如图②,M是正方形ABCD内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M)使它们将正方形ABCD的面积四等分,并说明理由.
问题解决:
(3)如图③,在四边形ABCD中,AB∥CD,AB+CD=BC,点P是AD的中点,如果AB=a,CD=b,且b>a,那么在边BC上是否存在一点Q,使PQ所在直线将四边形ABCD的面积分成相等的两部分?如若存在,求出BQ的长;若不存在,说明理由.

 
时间:2021-02-05 难度:3 相似度:1.17
23284. (2021•师大附中•九上期中) 问题探究
(1)如图1,在四边形ABCD中,∠ABC与∠ADC互余,小明发现四边形ABCD中这对互余的角可进行拼合:作∠CDF=∠ABC,在射线DF上任取一点E(不与点D重合),连接AE,发现AD,DE,AE之间的数量关系是        
问题解决
(2)如图2,有一个四边形公园ABCD,B、D是公园的两个入口,AC和BD是公园的两条主干道,其中∠BAC=90°,∠ABC与∠ADC互余,AB=2AC,AD=100m,CD=70m,求BD的长.
德优题库
时间:2021-12-15 难度:5 相似度:1
807. (2015•陕西省•真题) 如图,AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,与AC的延长线交于点D,作AE⊥AC交DE于点E.
(1)求证:∠BAD=∠E;
(2)若⊙O的半径为5,AC=8,求BE的长.
                                                                                                                             
时间:2021-02-03 难度:3 相似度:1
23871. (2020•益新中学•九上期末) 如图,在正方形ABCD中,E是BC的中点,点P在BC的延长线上,AP,DE交于点G,AP,CD交于点F.
(1)求证:AD•CF=CP•DF.
(2)若DF=2CF,AB=6,求DG的长.
德优题库
时间:2022-03-28 难度:4 相似度:1
24844. (2022•南靖县星光中学并入船中•八下期中) 将图形中的三角形绕某一点作适当旋转,能够解决很多几何问题.
(1)如图1,直角△ABC中,AB=AC,∠BAC=90°,D为BC边上的一点,连接AD,将△ABD绕点A逆时针旋转90°至△ACF,连接DF.若AD=2,BD=1,则CD=       
(2)如图2,四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,若四边形ABCD的面积是16,求AC的长;
(3)如图3,四边形ABCD中,AC,BD是对角线,△ABC是等边三角形,∠ADC=30°,AD=2,BD=3,求四边形ABCD的面积.
德优题库
时间:2023-03-16 难度:4 相似度:1
6520. (2017••模拟) 观察思考:如图,AB是直线a上的两个定点,点CD在直线b上运动(点C在点D的左侧),ABCD=4cm.已知abab间的距离为cm,连接ACBDBC,把△ABC沿BC折叠得△A1BC
(1)当A1D两点重合时,则 AC   cm
(2)当A1D两点不重合时,
①连接A1D,探究A1DBC的位置关系,并说明理由.
②若以A1CBD为顶点的四边形是矩形,画出示意图并直接写出AC的长.
时间:2021-03-20 难度:5 相似度:0.88
23874. (2020•益新中学•九上期末) 问题提出:如图,在锐角△ABC中,如何作一个正方形DEFG,使D,E落在BC边上,F,G分别落在AC,AB边上?
勤奋小组同学给出了如下作法:①画一个有三个顶点落在△ABC两边上的正方形HIJK;②连接BJ,并延长交AC于点F;③过点F作EF⊥BC于点E;④过F作FG∥BC,交AB于点G;⑤过点G作GD⊥BC于点D,则四边形DEFG即为所求作的正方形.
受勤奋小组同学的启发,创新小组同学认为可以在锐角△ABC中,作出长与宽的比为2:1的矩形DEFG,使D,E位于边BC上,F,G分别位于边AC,AB上.
(1)你认为勤奋小组同学的作法正确吗?请说明理由;
(2)请你帮助创新小组同学在在锐角△ABC中,作出所有满足长与宽的比为2:1的矩形DEFG,使D,E位于边BC上,F,G分别位于边AC,AB上.(在备用图中完成,不写作法,保留作图痕迹)
解决问题:
(3)在(2)的条件下,已知△ABC的面积为36,BC=12,求出矩形DEFG的面积.德优题库
时间:2022-03-28 难度:5 相似度:0.83
6067. (2017•晋江市南侨中学•模拟) 如图,已知AB是⊙O的直径,弦CDAB交于点E,过点A作⊙O的切线与CD的延长线交于点FCGAB交直线AF于点G
(1)若ACBC,求证:CG是⊙O的切线;
(2)如果DECEAC=8DEF的中点,求直径AB的长.
                                                                                                                            
时间:2021-03-20 难度:3 相似度:0.83
19254. (2016•西工大附中•模拟) 问题探究:三角形的内接四边形指顶点在三角形各边上的四边形.
(1)如图1,△ABC中,ABAC,正方形MNFE的顶点MEBC上,顶点NAB上,请以点B为位似中心,作△ABC的内接正方形.(不写作法).
(2)如图2,△ABC中,BC=12,∠B=45°,ADBC于点DAD=8,请以点D为位似中心,作△ABC的内接正方形,并求出所作正方形的面积(不写作法).
问题解决
(3)如图3,将(2)中的△ABC翻折得到四边形ABEC,对角线AEBC相交于点D,请以点D为位似中心作正方形MNPQ,使得点MNPQ在四边形ABEC的各边上.
要求:①写出作法,证明四边形MNPQ是正方形;
②求出正方形MNPQ的面积.
时间:2021-05-15 难度:5 相似度:0.83
24637. (2022•陕西省•真题) 如图,AB是⊙O的直径,AM是⊙O的切线,ACCD是⊙O的弦,且CDAB,垂足为E,连接BD并延长,交AM于点P
(1)求证:∠CAB=∠APB
(2)若⊙O的半径r=5,AC=8,求线段PD的长.

 
时间:2022-06-22 难度:4 相似度:0.83
963. (2016•陕西省•真题) 问题提出
(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.
问题探究
(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.
问题解决
(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG= 米,∠EHG=45°,经研究,只有当点E、F、G分别在边AD、AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.
时间:2021-02-07 难度:5 相似度:0.83
试题下载
试题内容
调用试题名称
共享人
唐老师
试题题型
解答题
试题难度
试题题源
2020*西工大*期末
下载次数
168次
下载金币
5德优币(当前结余18德优币)
温馨提示
该试题下载至自主题库后,下载、备课永久免费!
试卷设置
试卷名称
省市校区
阶段科目
年份卷型
选择类型
已选考点
在线训练
共享设置
共享金额
审核时间
2017-06-08 08:59
温馨提示
共享试题、试卷经平台审核通过后方可展示,并永久享用用户下载分红权!
共享声明
温馨提示
您的自主题库目前尚未开通该阶段科目,下载后除加入组卷和本地下载外,该科目所在的自主题库其他功能正常使用!
试题下载
文件格式
公式格式
纸张大小
答案类型
温馨提示
下载本地后,若出现文字与公式未居中显示!请全选中(Ctrl+A)-右键单击-段落-字体居中即可

word试卷生成中,请等待...

相同试题
视频讲解
温馨提示
视频讲解