首页 | 客服 | 上传赚现
(1)

服务热线

400-816-0029

    自建题库,共享分红

德优题库QQ交流群

24844. (2022•南靖县星光中学并入船中•八下期中) 将图形中的三角形绕某一点作适当旋转,能够解决很多几何问题.
(1)如图1,直角△ABC中,AB=AC,∠BAC=90°,D为BC边上的一点,连接AD,将△ABD绕点A逆时针旋转90°至△ACF,连接DF.若AD=2,BD=1,则CD=       
(2)如图2,四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,若四边形ABCD的面积是16,求AC的长;
(3)如图3,四边形ABCD中,AC,BD是对角线,△ABC是等边三角形,∠ADC=30°,AD=2,BD=3,求四边形ABCD的面积.
德优题库
共享时间:2022-05-25 难度:4
[考点]
全等三角形的判定与性质   勾股定理   四边形综合题   
[答案]
(1) 
  (2)  
  (3) 
[解析]
解:(1)如图1,连接DF,
 
∵AB=AC,∠BAC=90°,
∴∠ABC=∠ACB=45°,
∵将△ABD绕点A逆时针旋转90°至△ACF,
∴△ABD≌△ACF,∠DAF=90°,
∴AD=AF,∠ACF=∠ABD=45°,BD=CF=1,
∴∠BCF=90°,DF= AD=2 ,
∴CD==
故答案为: .
(2)如图2,延长CB至E,使BE=CD,连接AE,  

在四边形ABCD中,∠BAD=∠BCD=90°,
∴∠ABC+∠D=180°,
∵∠ABC+∠ABE=180°,
∴∠ABE=∠D,
又AB=AD,BE=CD,
∴△ABE≌△ADC(SAS),
∴AE=AC,∠BAE=∠DAC,
∴∠CAE=∠BAE+∠BAC=∠DAC+∠BAC=90°,
∴S△ACE=AC2
∵四边形ABCD的面积为16,
S△ABC+S△ACD=S△ABC+S△AEB=S△ACE=16
AC2=16,
∴AC=4
(3)如图3,在CD外侧作等边△CDE,连接AE,过点A作AH⊥CD于H,
 
∵AB=BC,∠ABC=60°,
∴△ABC是等边三角形,
∴AB=AC,∠ACB=60°,
在CD外侧作等边△CDE,连接AE, 则∠ADE=90°,DE=DC,∠DCE=60°,
∵∠ACB=∠DCE=60°,
∴∠ACE=∠BCD, CD=CE,AB=AC,
∴△ACE≌△BCD(SAS),
∴AE=BD, 在Rt△ADE中,DE2=AE2-AD2=BD2-AD2=5,
∴DE=
∴CD= ,
∵AH⊥CD,∠ADC=30°,
∴AH=AD=1,DH= AH= ,
∴CH=- ,
AC2=AH2+CH2
C2=1+8-2=9-2
∵四边形ABCD的面积=S△ABC+S△AD=AC2+×CD×AH=-+×1×=-
[点评]
本题是四边形综合题,考查了旋转的性质,全等三角形的判定和性质,勾股定理,四边形的内角和定理,解本题的关键是构造全等三角形.
转载声明:
本题解析属于发布者收集录入,如涉及版权请告知发布者本人!
25106. (2022•晋江市南侨中学•八下期中) 问题提出:
(1)如图1,已知线段AB=2,AC=4,连接BC,则三角形ABC面积最大为        
问题探究:
(2)如图2,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,若CD+BC=10,求四边形ABCD的面积;
问题解决:
(3)在四边形ABCD中,AB=AD,∠BAD+∠BCD=180°,AC=8,求四边形ABCD面积的最大值.
德优题库
共享时间:2022-05-18 难度:4 相似度:1.75
25783. (2024•高新一中•五模) (1)如图1,点O是等边△ABC的内心,∠DOE的两边分别交AB、BC于点D、E,且∠DOE=120°,若等边△ABC的边长为6,求四边形ODBE周长的最小值.
德优题库
(2)为培养学生劳动实践能力,某学校计划在校东南角开辟出一块平行四边形劳动实践基地.如图2所示,劳动实践基地为▱ABCD,点O为其对称中心,且OB=20m,点E、F分别在边AB、BC上,四边形EBFO为学校划分给九年级的实践活动区域,九年级学生打算在四边形EBFO区域种植两种不同的果蔬,即在△BEF、△EFO种植不同的果蔬.在点O处安装喷灌装置,且喷灌张角为60°,即∠EOF=60°,并修建OE、EF、OF三条小路.现要求规划的三条小路OE、EF、FO总长最小的同时,果蔬种植区域四边形EBFO的面积最大.求满足规划要求的三条小路OE、EF、FO总长的最小值,并计算同时满足四边形EBFO面积最大时学校应开辟的劳动实践基地▱ABCD的面积.
共享时间:2024-04-20 难度:5 相似度:1.38
23398. (2020•晋江市南侨中学•八上二月) 如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC上一动点,连接AD,过点A作AE⊥AD,并且始终保持AE=AD,连接CE,AF平分∠DAE交BC于F.
(1)探究线段BD、DF、FC之间的数量关系,并证明;
(2)若BD=3、CF=4,求AD的长.
德优题库
共享时间:2021-12-15 难度:4 相似度:1.34
20179. (2021•西工大附中•五模) 如图,ABCD,点ECB的延长线上,连接BD,∠A=∠EACED.求证:∠CBD=∠CDB
共享时间:2021-06-03 难度:3 相似度:1.33
882. (2013•陕西省•真题) 问题探究:
(1)请在图①中作出两条直线,使它们将圆面四等分;
(2)如图②,M是正方形ABCD内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M)使它们将正方形ABCD的面积四等分,并说明理由.
问题解决:
(3)如图③,在四边形ABCD中,AB∥CD,AB+CD=BC,点P是AD的中点,如果AB=a,CD=b,且b>a,那么在边BC上是否存在一点Q,使PQ所在直线将四边形ABCD的面积分成相等的两部分?如若存在,求出BQ的长;若不存在,说明理由.

 
共享时间:2013-11-18 难度:3 相似度:1.33
21196. (2019•爱知中学•一模) 如图,已知AC⊥AB于点A,BD⊥AB于点B,AF=BE,CE=DF,求证:∠C=∠D.
共享时间:2019-05-20 难度:3 相似度:1.33
6239. (2017•晋江市南侨中学•模拟) 如图,点ACDB四点共线,且ACBD,∠A=∠B,∠ADE=∠BCF,求证:DECF
                                                                                                                                  
共享时间:2017-07-03 难度:3 相似度:1.33
25103. (2022•铁一中学•八下期中) 如图,在△ABC中,AB=AC,点D,E,F,分别在AB,BC,AC边上,且BE=CF,BD=CE,∠A=30°,求∠DEF的度数.
德优题库
共享时间:2022-05-18 难度:3 相似度:1.33
25804. (2024•西北大附中•一模) 如图,在△ABD和△ACE中,AB=AC,BD⊥AC于点D,CE⊥AB于点E,BD、CE相交于点F,求证:BE=CD.
德优题库
共享时间:2024-03-13 难度:3 相似度:1.33
24220. (2021•交大附中•七下期中) 如图,在四边形ABCD中,AB∥CD,∠1=∠2,AD=EC.
(1)求证:△ABD≌△EDC;
(2)若AB=2,BE=3,求CD的长.
德优题库
共享时间:2021-05-06 难度:4 相似度:1.33
24841. (2022•爱知中学•八下期中) 如图,AD⊥BD,AC⊥BC,AD与BC交于点O,AD=BC.
求证:OC=OD.
德优题库
共享时间:2022-05-25 难度:3 相似度:1.33
1052. (2019•陕西省•真题) 问题提出:
1)如图1,已知△ABC,试确定一点D,使得以ABCD为顶点的四边形为平行四边形,请画出这个平行四边形;
问题探究:
2)如图2,在矩形ABCD中,AB4BC10,若要在该矩形中作出一个面积最大的△BPC,且使∠BPC90°,求满足条件的点P到点A的距离;
问题解决:
3)如图3,有一座塔A,按规定,要以塔A为对称中心,建一个面积尽可能大的形状为平行四边形的景区BCDE.根据实际情况,要求顶点B是定点,点B到塔A的距离为50米,∠CBE120°,那么,是否可以建一个满足要求的面积最大的平行四边形景区BCDE?若可以,求出满足要求的平行四边形BCDE的最大面积;若不可以,请说明理由.(塔A的占地面积忽略不计)
共享时间:2019-07-05 难度:5 相似度:1.33
1045. (2019•陕西省•真题) 如图,点AEFB在直线l上,AEBFACBD,且ACBD,求证:CFDE
                                                                                                                     
共享时间:2019-07-05 难度:3 相似度:1.33
25677. (2023•陕西省•真题) 如图,在△ABC中,∠B=50°,∠C=20°.过点A作AE⊥BC,垂足为E,延长EA至点D.使AD=AC.在边AC上截取AF=AB,连接DF.求证:DF=CB.
德优题库
共享时间:2023-07-20 难度:3 相似度:1.33
811. (2015•陕西省•真题) 如图,在每一个四边形ABCD中,均有AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12.
(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为      
(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值;
(3)如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC的值最小?若存在,求出此时cos∠BPC的值;若不存在,请说明理由.
共享时间:2015-08-18 难度:5 相似度:1.33

dy2023sx

2022-05-25

初中数学 | 解答题

  • 下载量
  • 浏览量
  • 收益额
  • 0
  • 441
  • 0
相同试题
试题下载
试题内容
调用试题名称
共享人
唐老师
试题题型
解答题
试题难度
试题题源
2020*西工大*期末
下载次数
168次
下载金币
5德优币(当前结余18德优币)
温馨提示
该试题下载至自主题库后,下载、备课永久免费!
试卷设置
试卷名称
省市校区
阶段科目
年份卷型
选择类型
已选考点
在线训练
视频讲解
温馨提示
视频讲解正在加载中、请等待!
视频解析购买
支付方式
德优币数
本次消耗0德优币
温馨提示

客服电话:400-816-0029,服务邮箱:610066832@qq.com

视频资源

试题找茬
纠错类型
纠错描述
温馨提示
共享试题、试卷经平台审核通过后方可展示,并永久享用用户下载分红权!