首页 | 客服 | 上传赚现
(1)

服务热线

400-816-0029

    自建题库,共享分红

德优题库QQ交流群

21715. (2021•交大附中•七模) 如图,抛物线Myax2+bx+ba经过点(1,﹣3)和(﹣4,12),与两坐标轴的交点分别为ABC,顶点为D
(1)求抛物线M的表达式和顶点D的坐标;
(2)若抛物线Ny=﹣xh2+与抛物线M有一个公共点为E,则在抛物线N上是否存在一点F,使得以BCEF为顶点的四边形是以BC为边的平行四边形?若存在,请求出h的值;若不存在,请说明理由.
共享时间:2021-07-25 难度:4
[考点]
二次函数的性质   二次函数图像上点的坐标特征   二次函数的动点问题   二次函数综合应用   
[答案]
答案详见解析
[解析]
解:(1)将(1,﹣3),(﹣4,12)代入yax2+bx+ba

解得

∴抛物线M的表达式为,顶点D的坐标为
(2)存在.

x=0时,y=﹣2,
y=0时,
解得x1=﹣1,x2=4,
C(0,﹣2),B(4,0),

当四边形BCFE是平行四边形时,
可看出是EF可看成分别是BC平移相同的单位得到,

②﹣③得m+n=2h﹣1④,
(①+④)÷2得⑤,
(④﹣①)÷2得⑥,
将⑤,⑥代入③得h=±
当四边形BCEF是平行四边形时,
可看出是EF可看成分别是CB平移相同的单位得到,

②﹣③得m+n=2h﹣1④,
(①+④)÷2得⑤,
(④﹣①)÷2得⑥,
将⑤,⑥代入③得
综上,h的值为或±
 
[点评]
本题考查了"二次函数的性质,二次函数图像上点的坐标特征,二次函数的动点问题,二次函数综合应用",属于"综合题",熟悉考点和题型是解题的关键。
转载声明:
本题解析属于发布者收集录入,如涉及版权请告知发布者本人!
19121. (2016•永春华侨中学•模拟) 已知抛物线经过A(﹣4,0),B(0,﹣4),C(2,0)三点.
(1)求抛物线的解析式;
(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S,求S关于m的函数关系式,并求S的最大值;
(3)若点P是抛物线上的动点,点Q是直线y=﹣x上的动点,使得点PQBO的四边形为平行四边形,求Q的坐标.

 
共享时间:2016-06-20 难度:4 相似度:1.67
25810. (2024•西北大附中•一模) 如图,抛物线yx2x−3的对称轴l与x轴交于点A,与y轴交于点B.
(1)求点A、B的坐标;
(2)C为该抛物线上的一个动点,点D为点C关于直线l的对称点(点D在点C的左侧),点M在坐标平面内,请问是否存在这样的点C,使得四边形ACMD是正方形?若存在,请求出点C的坐标;若不存在,请说明理由.
德优题库
共享时间:2024-03-13 难度:4 相似度:1.35
19854. (2021•陕西省•真题) 已知抛物线y=﹣x2+2x+8与x轴交于点AB(点A在点B的左侧),与y轴交于点C
(1)求点BC的坐标;
(2)设点C′与点C关于该抛物线的对称轴对称.在y轴上是否存在点P,使△PCC′与△POB相似,且PCPO是对应边?若存在,求出点P的坐标;若不存在,请说明理由.
共享时间:2021-06-25 难度:4 相似度:1.35
809. (2015•陕西省•真题) 在平面直角坐标系中,抛物线y=x2+5x+4的顶点为M,与x轴交于A,B两点,与y轴交于C点.
(1)求点A,B,C的坐标;
(2)求抛物线y=x2+5x+4关于坐标原点O对称的抛物线的函数表达式;
(3)设(2)中所求抛物线的顶点为M′,与x轴交于A′,B′两点,与y轴交于C′点,在以A,B,C,M,A′,B′,C′,M′这八个点中的四个点为顶点的平行四边形中,求其中一个不是菱形的平行四边形的面积.
共享时间:2015-08-18 难度:4 相似度:1.25
23921. (2022•高新一中•二模) 如图,已知抛物线y=-x2+bx+c与直线AB交于点A(-1,4),点B(3,0).
(1)求抛物线的函数关系式;
(2)点M是x轴上方抛物线上一点,点N是直线AB上一点,若以B、O、M、N为顶点的四边形是以OB为边的平行四边形,求点M的坐标.
德优题库
共享时间:2022-03-14 难度:4 相似度:1.25
23818. (2021•益新中学•五模) 已知二次函数y=x2+bx+c经过A、B两点,BC垂直x轴于点C,且A(-1,0),C(4,0),AC=BC.
(1)求抛物线的解析式;
(2)请画出抛物线的图象;
(3)点P是抛物线对称轴上一个动点,是否存在这样的点P,使三角形ABP为直角三角形?若存在,求出P点坐标;若不存在,请说明理由.
德优题库
共享时间:2021-06-18 难度:4 相似度:1.25
22986. (2021•晋江市南侨中学•九上期中) 德优题库已知二次函数y=ax2+bx-3a经过点A(-1,0),C(0,3),与x轴交于另一点B,抛物线的顶点为D.
(1)求此二次函数解析式;
(2)连接AC、CD、DB,求S四边形ACDB
(3)在该抛物线上是否存在点P,使得S△ABP=S四边形ACDB?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.
共享时间:2021-11-15 难度:4 相似度:1.25
21439. (2020•铁一中学•八模) 如图,抛物线经过点A44),B50)和原点O,点P为抛物线上的一个动点,过点Px轴的垂线,垂足为Dm0)(m0),并与直线OA交于点C
1)求出抛物线的函数表达式;
2)连接OP,当SOPCSOCD时,求出此时的点P坐标;
3)在直线OA上取一点M,使得以PCM为顶点的三角形与△OCD全等,请直接写出点M的坐标.
共享时间:2020-07-21 难度:4 相似度:1.25
20160. (2021•漳州双语实验学校•四模) 在平面直角坐标系中,抛物线Lyx2﹣2x﹣3与y轴交于点C,点D为抛物线的顶点.
(1)求点C、点D的坐标;
(2)将抛物线L向右平移mm>0)个单位得到抛物线L',抛物线LL'的交点为P,若△PCD是以CD为直角边的直角三角形,请求出m的值.
共享时间:2021-05-31 难度:4 相似度:1.25
19253. (2016•西工大附中•模拟) 如图,在平面直角坐标系中,抛物线W1y=﹣x2+6x﹣5与x轴交于AB两点,点C是该抛物线的顶点.
(1)若抛物线W1与抛物线W2关于直线x=﹣1对称,其中,点C与点F,点E与点B,点D与点A是对应点,求抛物线W2的表达式.
(2)连接BC,在直线x=﹣1上找一点H,使得△BCH周长最小,并求出点H的坐标.
(3)连接FD,点P是直线x=﹣1上一点,点Q是抛物线W1上一点,若以点DFPQ为顶点的四边形是平行四边形,请求出符合条件的点Q的坐标.

 
共享时间:2016-06-06 难度:4 相似度:1.25
6168. (2014•德州市•真题) 如图,在平面直角坐标系中,已知点A的坐标是(4,0),并且OAOC=4OB,动点P在过ABC三点的抛物线上.
(1)求抛物线的解析式;
(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;
(3)过动点PPE垂直于y轴于点E,交直线AC于点D,过点Dx轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.
共享时间:2017-06-21 难度:4 相似度:1.25
1093. (2020•陕西省•真题) 如图,抛物线yx2+bx+c经过点(3,12)和(﹣2,﹣3),与两坐标轴的交点分别为ABC,它的对称轴为直线l
(1)求该抛物线的表达式;
(2)P是该抛物线上的点,过点Pl的垂线,垂足为DEl上的点.要使以PDE为顶点的三角形与△AOC全等,求满足条件的点P,点E的坐标.
                                                                                                                            
共享时间:2020-07-30 难度:4 相似度:1.25
1051. (2019•陕西省•真题) 在平面直角坐标系中,已知抛物线Lyax2+cax+c经过点A(﹣30)和点B0,﹣6),L关于原点O对称的抛物线为L′.
1)求抛物线L的表达式;
2)点P在抛物线L′上,且位于第一象限,过点PPDy轴,垂足为D.若△POD与△AOB相似,求符合条件的点P的坐标.
                                                                                                                           
共享时间:2019-07-05 难度:5 相似度:1.25
880. (2013•陕西省•真题) 在平面直角坐标系中,一个二次函数的图象经过点A(1,0)、B(3,0)两点.
(1)写出这个二次函数图象的对称轴;
(2)设这个二次函数图象的顶点为D,与y轴交于点C,它的对称轴与x轴交于点E,连接AC、DE和DB,当△AOC与△DEB相似时,求这个二次函数的表达式.
[提示:如果一个二次函数的图象与x轴的交点为A(x1,0)、B(x2,0),那么它的表达式可表示为y=a(x﹣x1)(x﹣x2)].
                                                                                           
 
共享时间:2013-11-18 难度:3 相似度:1.25
61. (2020•北京市•真题) 在平面直角坐标系xOy中,Mx1y1),Nx2y2)为抛物线yax2+bx+ca>0)上任意两点,其中x1x2
(1)若抛物线的对称轴为x=1,当x1x2为何值时,y1y2c
(2)设抛物线的对称轴为xt,若对于x1+x2>3,都有y1y2,求t的取值范围.
共享时间:2020-12-28 难度:3 相似度:1.25

dysx2021

2021-07-25

初中数学 | 解答题

  • 下载量
  • 浏览量
  • 收益额
  • 0
  • 548
  • 0
相同试题
试题下载
试题内容
调用试题名称
共享人
唐老师
试题题型
解答题
试题难度
试题题源
2020*西工大*期末
下载次数
168次
下载金币
5德优币(当前结余18德优币)
温馨提示
该试题下载至自主题库后,下载、备课永久免费!
试卷设置
试卷名称
省市校区
阶段科目
年份卷型
选择类型
已选考点
在线训练
视频讲解
温馨提示
视频讲解正在加载中、请等待!
视频解析购买
支付方式
德优币数
本次消耗0德优币
温馨提示

客服电话:400-816-0029,服务邮箱:610066832@qq.com

视频资源

试题找茬
纠错类型
纠错描述
温馨提示
共享试题、试卷经平台审核通过后方可展示,并永久享用用户下载分红权!