f
首页 | 客服

王老师初中数学

欢迎登录德优题库!

登录/注册 | 通知 | 退出
(1)

服务热线

400-816-0029

    自建题库,共享分红

德优题库QQ交流群

65. (2019•铜仁市•期中) 如图,一元二次方程x2+2x﹣3=0的二根x1x2x1x2)是抛物线yax2+bx+cx轴的两个交点BC的横坐标,且此抛物线过点A(3,6).
(1)求此二次函数的解析式;
(2)写出不等式ax2+bx+c≥0的解集;
(3)设此抛物线的顶点为P,对称轴与线段AC相交于点Q,求点P和点Q的坐标;
(4)在x轴上有一动点M,当MQ+MA取得最小值时,求M点的坐标.
                                                                                                                                                   
[考点]
根与系数的关系(韦达定理)   抛物线与x轴的交点   二次函数与不等式(组)   轴对称-最短路线问题   
[答案]
答案见解析
[解析]
解:(1)一元二次方程x2+2x﹣3=0的二根x1x2x1x2)为:
x1=﹣3,x2=1.
∴抛物线yax2+bx+cx轴的两个交点的坐标为B(1,0),C(﹣3,0).
设二次函数的解析式为yax+3)(x﹣1),
∵抛物线过点A(3,6).
∴6=a(3+3)(3﹣1),解得a
∴二次函数的解析式为yx+3)(x﹣1)=x2+x
(2)根据图象可知:
不等式ax2+bx+c≥0的解集为:x≤﹣3或x≥1;
(3)由yx2+x
∴抛物线的顶点坐标为P(﹣1,﹣2),对称轴方程为x=﹣1.
设直线AC解析式为ykx+b
A(3,6),C(﹣3,0),代入解得:
k=1,b=3,
直线AC解析式为yx+3.
x=﹣1代入,得y=2.
Q(﹣1,2).
(4)作点A关于x轴的对称点A′(3,﹣6),

连接AQAQx轴交于点M即为所求的点.
设直线AQ的解析式为ykx+b
A′(3,﹣6),Q(﹣1,2)代入解得:
k=﹣2,b=0.
∴直线AC的解析式为y=﹣2x
x=0,则y=0.
M(0,0).
[点评]
本题考查了"根与系数的关系(韦达定理)   待定系数法求二次函数   抛物线与x轴的交点   二次函数与不等式(组   轴对称-最短路线问题   ",属于"综合题",熟悉知识点是解题的关键
62. (2017•北京市•真题) 在平面直角坐标系xOy中,抛物线yx2﹣4x+3与x轴交于点AB(点A在点B的左侧),与y轴交于点C
(1)求直线BC的表达式;
(2)垂直于y轴的直线l与抛物线交于点Px1y1),Qx2y2),与直线BC交于点Nx3y3),若x1x2x3,结合函数的图象,求x1+x2+x3的取值范围.
时间:2020-12-26 难度:3 相似度:1.25
509. (2018•陕西省•副题) )已知抛物线Lymx28x+3mx轴相交于AB(﹣10)两点,并与y轴相交于点C.抛物线L′与L关于坐标原点对称,点ABL′上的对应点分别为A′、B
1)求抛物线L的函数表达式;
2)在抛物线L′上是否存在点P,使得△PA'A的面积等于△CB'B的面积?若存在,求点P的坐标;若不存在,请说明理由.
时间:2021-01-08 难度:5 相似度:1.25
67. (2019•自贡市•期末) 如图,在平面直角坐标系中,已知抛物线yax2+bx﹣5与x轴交于A(﹣1.0).B(5,0)两点,与y轴交于点C
(1)求地物线的解析式;
(2)在地物线的对称轴上找一点M.使得MA+MC最小,请求出点M的坐标;
(3)在直线BC下方抛物线上是否存在点P,使得△PBC的面积最大?若存在.请求出点P的坐标;若不存在,请说明理由.
                                                                                                                                                   
时间:2020-12-26 难度:4 相似度:1
1000. (2018•陕西省•真题) 已知抛物线L:y=x2+x﹣6与x轴相交于A、B两点(点A在点B的左侧),并与y轴相交于点C.
(1)求A、B、C三点的坐标,并求△ABC的面积;
(2)将抛物线L向左或向右平移,得到抛物线L′,且L′与x轴相交于A'、B′两点(点A′在点B′的左侧),并与y轴相交于点C′,要使△A'B′C′和△ABC的面积相等,求所有满足条件的抛物线的函数表达式.
时间:2021-02-08 难度:4 相似度:0.75
79. (2020•鄂尔多斯市•真题) 如图1,抛物线yx2+bx+cx轴于AB两点,其中点A的坐标为(1,0),与y轴交于点C(0,﹣3).
(1)求抛物线的函数解析式;
(2)点Dy轴上一点,如果直线BD与直线BC的夹角为15°,求线段CD的长度;
(3)如图2,连接AC,点P在抛物线上,且满足∠PAB=2∠ACO,求点P的坐标.
时间:2020-12-26 难度:3 相似度:0.75
72. (2020•宿迁市•真题) 二次函数yax2+bx+3的图象与x轴交于A(2,0),B(6,0)两点,与y轴交于点C,顶点为E..
(1)求这个二次函数的表达式,并写出点E的坐标;
(2)如图①,D是该二次函数图象的对称轴上一个动点,当BD的垂直平分线恰好经过点C时,求点D的坐标;
(3)如图②,P是该二次函数图象上的一个动点,连接OP,取OP中点Q,连接QCQECE,当△CEQ的面积为12时,求点P的坐标.
时间:2020-12-26 难度:4 相似度:0.75
76. (2020•陕西省•同步) 在平面直角坐标系中,抛物线yax2+bx﹣3过点A(﹣3,0),B(1,0),与y轴交于点C,顶点为点D
(1)求抛物线的解析式;
(2)点P为直线CD上的一个动点,连接BC
①如图1,是否存在点P,使∠PBC=∠BCO?若存在,求出所有满足条件的点P的坐标;若不存在,请说明理由;
②如图2,点Px轴上方,连接PA交抛物线于点N,∠PAB=∠BCO,点M在第三象限抛物线上,连接MN,当∠ANM=45°时,请直接写出点M的坐标.
时间:2020-12-26 难度:4 相似度:0.58
510. (2018•陕西省•副题) 问题提出
1)如图,在△ABC中,AB4,∠A135°,点B关于AC所在直线的对称点为B′,则BB′的长度为      
问题探究
2)如图,半圆O的直径AB10C的中点,点D上,且2PAB上的动点,试求PC+PD的最小值.
问题解决
3)如图,扇形花坛AOB的半径为20m,∠AOB45°.根据工程需要.现想在上选点P,在边OA上选点E,在边OB上选点F,用装饰灯带在花坛内的地面上围成一个△PEF,使晚上点亮时,花坛中的花卉依然赏心悦目.为了既节省材料,又美观大方,需使得灯带PE+EF+FP的长度最短,并且用长度最短的灯带围成的△PEF为等腰三角形.试求PE+EF+FP的值最小时的等腰△PEF的面积.(安装损耗忽略不计)
时间:2021-01-08 难度:5 相似度:0.58
75. (2020•呼伦贝尔市•真题) 如图,抛物线y=﹣x2+bx+cx轴交于点A(﹣1,0)和点B(4,0),与y轴交于点C,连接BC,点P是线段BC上的动点(与点BC不重合),连接AP并延长AP交抛物线于点Q,连接CQBQ,设点Q的横坐标为m
(1)求抛物线的解析式和点C的坐标;
(2)当△BCQ的面积等于2时,求m的值;
(3)在点P运动过程中,是否存在最大值?若存在,求出最大值;若不存在,请说明理由.
                                                                                                                                             
时间:2020-12-26 难度:4 相似度:0.58
64. (2018•乐山市•真题) 已知关于x的一元二次方程mx2+(1﹣5mx﹣5=0(m≠0).
(1)求证:无论m为任何非零实数,此方程总有两个实数根;
(2)若抛物线ymx2+(1﹣5mx﹣5与x轴交于Ax1,0)、Bx2,0)两点,且|x1x2|=6,求m的值;
(3)若m>0,点Pab)与Qa+nb)在(2)中的抛物线上(点PQ不重合),求代数式4a2n2+8n的值.
时间:2020-12-26 难度:3 相似度:0.58
63. (2019•湘潭市•真题) 如图一,抛物线yax2+bx+cA(﹣1,0)、B(3,0)、C(0,)三点.

(1)求该抛物线的解析式;
(2)Px1y1)、Q(4,y2)两点均在该抛物线上,若y1y2,求P点横坐标x1的取值范围;
(3)如图二,过点Cx轴的平行线交抛物线于点E,该抛物线的对称轴与x轴交于点D,连结CDCB,点F为线段CB的中点,点MN分别为直线CDCE上的动点,求△FMN周长的最小值.
时间:2020-12-26 难度:4 相似度:0.58
71. (2019•自贡市•期末) 如图,已知抛物线yax2+4x+c经过A(2,0)、B(0,﹣6)两点,其对称轴与x轴交于点C
(1)求该抛物线和直线BC的解析式;
(2)设抛物线与直线BC相交于点D,求△ABD的面积;
(3)在该抛物线的对称轴上是否存在点Q,使得△QAB的周长最小?若存在,求出Q点的坐标及△QAB最小周长;若不存在,请说明理由.
                                                                                                                                                 
时间:2020-12-26 难度:3 相似度:0.5
66. (2020•达州市•真题) 如图,在平面直角坐标系xOy中,已知直线yx﹣2与x轴交于点A,与y轴交于点B,过AB两点的抛物线yax2+bx+cx轴交于另一点C(﹣1,0).
(1)求抛物线的解析式;
(2)在抛物线上是否存在一点P,使SPABSOAB?若存在,请求出点P的坐标,若不存在,请说明理由;
(3)点M为直线AB下方抛物线上一点,点Ny轴上一点,当△MAB的面积最大时,求MN+ON的最小值.
                                                                                                                                                    
时间:2020-12-26 难度:5 相似度:0.5
963. (2016•陕西省•真题) 问题提出
(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.
问题探究
(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.
问题解决
(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG= 米,∠EHG=45°,经研究,只有当点E、F、G分别在边AD、AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.
时间:2021-02-07 难度:5 相似度:0.5
74. (2020•东营市•真题) 如图,抛物线yax2﹣3ax﹣4a的图象经过点C(0,2),交x轴于点AB(点A在点B左侧),连接BC,直线ykx+1(k>0)与y轴交于点D,与BC上方的抛物线交于点E,与BC交于点F
(1)求抛物线的解析式及点AB的坐标;
(2)是否存在最大值?若存在,请求出其最大值及此时点E的坐标;若不存在,请说明理由.
                                                                                                                                                
时间:2020-12-26 难度:3 相似度:0.45

亦世凡华

2020-12-26 15:25

初中数学 | 解答题

  • 下载量
  • 浏览量
  • 收益额
  • 0
  • 722
  • 0
试题下载
试题内容
调用试题名称
共享人
唐老师
试题题型
解答题
试题难度
试题题源
2020*西工大*期末
下载次数
168次
下载金币
5德优币(当前结余18德优币)
温馨提示
该试题下载至自主题库后,下载、备课永久免费!
试卷设置
试卷名称
省市校区
阶段科目
年份卷型
选择类型
已选考点
在线训练
共享设置
共享金额
审核时间
2021-01-06 03:29
温馨提示
共享试题、试卷经平台审核通过后方可展示,并永久享用用户下载分红权!
共享声明
温馨提示
您的自主题库目前尚未开通该阶段科目,下载后除加入组卷和本地下载外,该科目所在的自主题库其他功能正常使用!
试题下载
文件格式
公式格式
纸张大小
答案类型
温馨提示
下载本地后,若出现文字与公式未居中显示!请全选中(Ctrl+A)-右键单击-段落-字体居中即可

word试卷生成中,请等待...

相同试题
视频讲解
温馨提示
视频讲解