首页 | 客服 | 上传赚现
(1)

服务热线

400-816-0029

    自建题库,共享分红

德优题库QQ交流群

509. (2018•陕西省•副题) )已知抛物线Lymx28x+3mx轴相交于AB(﹣10)两点,并与y轴相交于点C.抛物线L′与L关于坐标原点对称,点ABL′上的对应点分别为A′、B
1)求抛物线L的函数表达式;
2)在抛物线L′上是否存在点P,使得△PA'A的面积等于△CB'B的面积?若存在,求点P的坐标;若不存在,请说明理由.
共享时间:2018-07-03 难度:5
[考点]
抛物线与x轴的交点   
[答案]
答案详见解析
[解析]
解:(1)将B(﹣10)代入ymx28x+3m,得m+8+3m0
解之,得m=﹣2
抛物线L的函数表达式为y=﹣2x28x6

2)存在,在L中,令x0,则y=﹣6
C0,﹣6).
y0,则﹣2x28x60
解之,得x=﹣1x=﹣3
A(﹣30).
∵抛物线L'L关于坐标原点对称,
A'30),B'10),
AA'6BB'2OC6
L'上的点PL上的对应点为P'P'的纵坐标为n
由对称性,可得 SPA'ASP'A'A要使 SP'A'ASCB'B,则
|n|2n=±2
y2,则﹣2x28x62
解之,得x=﹣2
y=﹣2,则﹣2x28x6=﹣2
解之,得P'的坐标为(﹣22),
由对称性,可得P的坐标为(2,﹣2),(2)或(2).
[点评]
本题考查了"二次函数图象的交点问题   待定系数法求二次函数   抛物线与x轴的交点   ",属于"压轴题",熟悉题型是解题的关键
转载声明:
本题解析属于发布者收集录入,如涉及版权请告知发布者本人!
62. (2017•北京市•真题) 在平面直角坐标系xOy中,抛物线yx2﹣4x+3与x轴交于点AB(点A在点B的左侧),与y轴交于点C
(1)求直线BC的表达式;
(2)垂直于y轴的直线l与抛物线交于点Px1y1),Qx2y2),与直线BC交于点Nx3y3),若x1x2x3,结合函数的图象,求x1+x2+x3的取值范围.
共享时间:2021-01-06 难度:3 相似度:2
72. (2020•宿迁市•真题) 二次函数yax2+bx+3的图象与x轴交于A(2,0),B(6,0)两点,与y轴交于点C,顶点为E..
(1)求这个二次函数的表达式,并写出点E的坐标;
(2)如图①,D是该二次函数图象的对称轴上一个动点,当BD的垂直平分线恰好经过点C时,求点D的坐标;
(3)如图②,P是该二次函数图象上的一个动点,连接OP,取OP中点Q,连接QCQECE,当△CEQ的面积为12时,求点P的坐标.
共享时间:2021-01-06 难度:4 相似度:1.5
79. (2020•鄂尔多斯市•真题) 如图1,抛物线yx2+bx+cx轴于AB两点,其中点A的坐标为(1,0),与y轴交于点C(0,﹣3).
(1)求抛物线的函数解析式;
(2)点Dy轴上一点,如果直线BD与直线BC的夹角为15°,求线段CD的长度;
(3)如图2,连接AC,点P在抛物线上,且满足∠PAB=2∠ACO,求点P的坐标.
共享时间:2021-01-06 难度:3 相似度:1.5
1000. (2018•陕西省•真题) 已知抛物线L:y=x2+x﹣6与x轴相交于A、B两点(点A在点B的左侧),并与y轴相交于点C.
(1)求A、B、C三点的坐标,并求△ABC的面积;
(2)将抛物线L向左或向右平移,得到抛物线L′,且L′与x轴相交于A'、B′两点(点A′在点B′的左侧),并与y轴相交于点C′,要使△A'B′C′和△ABC的面积相等,求所有满足条件的抛物线的函数表达式.
共享时间:2018-07-02 难度:4 相似度:1.5
64. (2018•乐山市•真题) 已知关于x的一元二次方程mx2+(1﹣5mx﹣5=0(m≠0).
(1)求证:无论m为任何非零实数,此方程总有两个实数根;
(2)若抛物线ymx2+(1﹣5mx﹣5与x轴交于Ax1,0)、Bx2,0)两点,且|x1x2|=6,求m的值;
(3)若m>0,点Pab)与Qa+nb)在(2)中的抛物线上(点PQ不重合),求代数式4a2n2+8n的值.
共享时间:2021-01-06 难度:3 相似度:1.33
75. (2020•呼伦贝尔市•真题) 如图,抛物线y=﹣x2+bx+cx轴交于点A(﹣1,0)和点B(4,0),与y轴交于点C,连接BC,点P是线段BC上的动点(与点BC不重合),连接AP并延长AP交抛物线于点Q,连接CQBQ,设点Q的横坐标为m
(1)求抛物线的解析式和点C的坐标;
(2)当△BCQ的面积等于2时,求m的值;
(3)在点P运动过程中,是否存在最大值?若存在,求出最大值;若不存在,请说明理由.
                                                                                                                                             
共享时间:2021-01-06 难度:4 相似度:1.33
76. (2020•陕西省•同步) 在平面直角坐标系中,抛物线yax2+bx﹣3过点A(﹣3,0),B(1,0),与y轴交于点C,顶点为点D
(1)求抛物线的解析式;
(2)点P为直线CD上的一个动点,连接BC
①如图1,是否存在点P,使∠PBC=∠BCO?若存在,求出所有满足条件的点P的坐标;若不存在,请说明理由;
②如图2,点Px轴上方,连接PA交抛物线于点N,∠PAB=∠BCO,点M在第三象限抛物线上,连接MN,当∠ANM=45°时,请直接写出点M的坐标.
共享时间:2021-01-06 难度:4 相似度:1.33
65. (2019•铜仁市•期中) 如图,一元二次方程x2+2x﹣3=0的二根x1x2x1x2)是抛物线yax2+bx+cx轴的两个交点BC的横坐标,且此抛物线过点A(3,6).
(1)求此二次函数的解析式;
(2)写出不等式ax2+bx+c≥0的解集;
(3)设此抛物线的顶点为P,对称轴与线段AC相交于点Q,求点P和点Q的坐标;
(4)在x轴上有一动点M,当MQ+MA取得最小值时,求M点的坐标.
                                                                                                                                                   
共享时间:2021-01-06 难度:4 相似度:1.25
66. (2020•达州市•真题) 如图,在平面直角坐标系xOy中,已知直线yx﹣2与x轴交于点A,与y轴交于点B,过AB两点的抛物线yax2+bx+cx轴交于另一点C(﹣1,0).
(1)求抛物线的解析式;
(2)在抛物线上是否存在一点P,使SPABSOAB?若存在,请求出点P的坐标,若不存在,请说明理由;
(3)点M为直线AB下方抛物线上一点,点Ny轴上一点,当△MAB的面积最大时,求MN+ON的最小值.
                                                                                                                                                    
共享时间:2021-01-06 难度:5 相似度:1.25
67. (2019•自贡市•期末) 如图,在平面直角坐标系中,已知抛物线yax2+bx﹣5与x轴交于A(﹣1.0).B(5,0)两点,与y轴交于点C
(1)求地物线的解析式;
(2)在地物线的对称轴上找一点M.使得MA+MC最小,请求出点M的坐标;
(3)在直线BC下方抛物线上是否存在点P,使得△PBC的面积最大?若存在.请求出点P的坐标;若不存在,请说明理由.
                                                                                                                                                   
共享时间:2021-01-06 难度:4 相似度:1.25
71. (2019•自贡市•期末) 如图,已知抛物线yax2+4x+c经过A(2,0)、B(0,﹣6)两点,其对称轴与x轴交于点C
(1)求该抛物线和直线BC的解析式;
(2)设抛物线与直线BC相交于点D,求△ABD的面积;
(3)在该抛物线的对称轴上是否存在点Q,使得△QAB的周长最小?若存在,求出Q点的坐标及△QAB最小周长;若不存在,请说明理由.
                                                                                                                                                 
共享时间:2021-01-06 难度:3 相似度:1.25
69. (2019•合肥市•模拟) 如图,在平面直角坐标系xOy中,四边形ABCD是边长为5的菱形,顶点ACD均在坐标轴上,sinB
(1)求过ACD三点的抛物线的解析式;
(2)记直线AB的解析式为y1mx+n,(1)中抛物线的解析式为y2ax2+bx+c,求当y1y2时,自变量x的取值范围;
(3)设直线AB与(1)中抛物线的另一个交点为EP点为抛物线上AE两点之间的一个动点,且直线PEx轴于点F,问:当P点在何处时,△PAE的面积最大?并求出面积的最大值.
                                                                                                                                               
共享时间:2021-01-06 难度:4 相似度:1.2
74. (2020•东营市•真题) 如图,抛物线yax2﹣3ax﹣4a的图象经过点C(0,2),交x轴于点AB(点A在点B左侧),连接BC,直线ykx+1(k>0)与y轴交于点D,与BC上方的抛物线交于点E,与BC交于点F
(1)求抛物线的解析式及点AB的坐标;
(2)是否存在最大值?若存在,请求出其最大值及此时点E的坐标;若不存在,请说明理由.
                                                                                                                                                
共享时间:2021-01-06 难度:3 相似度:1.2
22986. (2021•晋江市南侨中学•九上期中) 德优题库已知二次函数y=ax2+bx-3a经过点A(-1,0),C(0,3),与x轴交于另一点B,抛物线的顶点为D.
(1)求此二次函数解析式;
(2)连接AC、CD、DB,求S四边形ACDB
(3)在该抛物线上是否存在点P,使得S△ABP=S四边形ACDB?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.
共享时间:2021-11-15 难度:4 相似度:1.17
6344. (2017•永春三中•模拟) 如图,直线AB与抛物线l:y=-x2+bx+c分别交于A(0,5),B(5,0)两点,这条抛物线的顶点为C,对称轴与直线AB交于点D.
(1)求抛物线l的函数表达式,并直接写出点C、D的坐标.
(2)将抛物线平移,平移后的抛物线顶点记为C′,对称轴与x轴的交点记为E,如果以C、D、C′、E为顶点的四边形是菱形,那么应将抛物线l怎样平移?为什么?
德优题库
共享时间:2017-06-08 难度:4 相似度:1.14

亦世凡华

2018-07-03

初中数学 | 解答题

  • 下载量
  • 浏览量
  • 收益额
  • 0
  • 654
  • 0
相同试题
试题下载
试题内容
调用试题名称
共享人
唐老师
试题题型
解答题
试题难度
试题题源
2020*西工大*期末
下载次数
168次
下载金币
5德优币(当前结余18德优币)
温馨提示
该试题下载至自主题库后,下载、备课永久免费!
试卷设置
试卷名称
省市校区
阶段科目
年份卷型
选择类型
已选考点
在线训练
视频讲解
温馨提示
视频讲解正在加载中、请等待!
视频解析购买
支付方式
德优币数
本次消耗0德优币
温馨提示

客服电话:400-816-0029,服务邮箱:610066832@qq.com

视频资源

试题找茬
纠错类型
纠错描述
温馨提示
共享试题、试卷经平台审核通过后方可展示,并永久享用用户下载分红权!