首页 | 客服 | 上传赚现
(1)

服务热线

400-816-0029

    自建题库,共享分红

德优题库QQ交流群

921. (2017•陕西省•真题) 问题提出
(1)如图①,△ABC是等边三角形,AB=12,若点O是△ABC的内心,则OA的长为      
问题探究
(2)如图②,在矩形ABCD中,AB=12,AD=18,如果点P是AD边上一点,且AP=3,那么BC边上是否存在一点Q,使得线段PQ将矩形ABCD的面积平分?若存在,求出PQ的长;若不存在,请说明理由.
问题解决
(3)某城市街角有一草坪,草坪是由△ABM草地和弦AB与其所对的劣弧围成的草地组成,如图③所示.管理员王师傅在M处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水,于是,他让喷灌龙头的转角正好等于∠AMB(即每次喷灌时喷灌龙头由MA转到MB,然后再转回,这样往复喷灌.)同时,再合理设计好喷灌龙头喷水的射程就可以了.
如图③,已测出AB=24m,MB=10m,△AMB的面积为96m2;过弦AB的中点D作DE⊥AB交于点E,又测得DE=8m.
请你根据以上信息,帮助王师傅计算喷灌龙头的射程至少多少米时,才能实现他的想法?为什么?(结果保留根号或精确到0.01米)
共享时间:2017-07-10 难度:5
[考点]
等边三角形的性质   勾股定理   矩形的性质   特殊角的三角函数值   圆的综合题   
[答案]
答案详见解析
[解析]
解:(1)如图1,过O作OD⊥AC于D,则AD=AC=×12=6,

∵O是内心,△ABC是等边三角形,
∴∠OAD=∠BAC=×60°=30°,
在Rt△AOD中,cos∠OAD=cos30°=
∴OA=6÷=4
故答案为:4
(2)存在,如图2,连接AC、BD交于点O,连接PO并延长交BC于Q,则线段PQ将矩形ABCD的面积平分,

∵点O为矩形ABCD的对称中心,
∴CQ=AP=3,
过P作PM⊥BC于点M,则PM=AB=12,MQ=18﹣3﹣3=12,
由勾股定理得:PQ===12
(3)如图3,作射线ED交AM于点C

∵AD=DB,ED⊥AB,是劣弧,
所在圆的圆心在射线DC上,
假设圆心为O,半径为r,连接OA,则OA=r,OD=r﹣8,AD=AB=12,
在Rt△AOD中,r2=122+(r﹣8)2
解得:r=13,
∴OD=5,
过点M作MN⊥AB,垂足为N,
∵S△ABM=96,AB=24,
AB•MN=96,
×24×MN=96,
∴MN=8,NB=6,AN=18,
∵CD∥MN,
∴△ADC∽△ANM,


∴DC=
∴OD<CD,
∴点O在△AMB内部,
∴连接MO并延长交于点F,则MF为草坪上的点到M点的最大距离,
∵在上任取一点异于点F的点G,连接GO,GM,
∴MF=OM+OF=OM+OG>MG,
即MF>MG,
过O作OH⊥MN,垂足为H,则OH=DN=6,MH=3,
∴OM===3
∴MF=OM+r=3+13≈19.71(米),
答:喷灌龙头的射程至少为19.71米.
[点评]
本题考查了"等边三角形的性质   勾股定理   矩形的性质   圆的综合题   特殊角的三角函数值   ",属于"压轴题",熟悉知识点是解题的关键
原创声明:
本题解析属于发布者原创,非正常渠道不可私用,违者必究!
850. (2014•陕西省•真题) 问题探究
(1)如图①,在矩形ABCD中,AB=3,BC=4,如果BC边上存在点P,使△APD为等腰三角形,那么请画出满足条件的一个等腰三角形△APD,并求出此时BP的长;
(2)如图②,在△ABC中,∠ABC=60°,BC=12,AD是BC边上的高,E、F分别为边AB、AC的中点,当AD=6时,BC边上存在一点Q,使∠EQF=90°,求此时BQ的长;
问题解决
(3)有一山庄,它的平面图为如图③的五边形ABCDE,山庄保卫人员想在线段CD上选一点M安装监控装置,用来监视边AB,现只要使∠AMB大约为60°,就可以让监控装置的效果达到最佳,已知∠A=∠E=∠D=90°,AB=270m,AE=400m,ED=285m,CD=340m,问在线段CD上是否存在点M,使∠AMB=60°?若存在,请求出符合条件的DM的长,若不存在,请说明理由.

 
共享时间:2014-09-18 难度:3 相似度:1.56
27756. (2023•石狮市石光中学•九上二月) 【直接运用】(1)如图1,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径的半圆交AB于D,P是弧CD上的一个动点,连接AP,则AP的最小值是        ;【构造运用】(2)如图2,在平行四边形ABCD中,AB=4,AD=6,∠A=120°,点F、点N分别为CD、AB的中点,点E在边AD上运动,将△EDF沿EF折叠,使得点D落在D′处,连接BD′,点M为BD′中点,求MN的最小值;
【灵活运用】(3)如图3,已知正方形ABCD的边长为6,点M、N分别从点B、C同时出发,以相同的速度沿边BC、CD方向向终点C和D运动,连接AM和BN交于点P,则点P到点C的最短距离,并说明理由.
德优题库
共享时间:2023-10-10 难度:1 相似度:1.2
25992. (2024•铁一中学•四模) 德优题库如图,已知等边△ABC,D为BC边上一点,请用尺规作图法,在射线AD上找一点E,使得∠AEC=60°.(保留作图痕迹,不写作法)
共享时间:2024-03-12 难度:2 相似度:1.2
1001. (2018•陕西省•真题) 问题提出
(1)如图①,在△ABC中,∠A=120°,AB=AC=5,则△ABC的外接圆半径R的值为   
问题探究
(2)如图②,⊙O的半径为13,弦AB=24,M是AB的中点,P是⊙O上一动点,求PM的最大值.
问题解决
(3)如图③所示,AB、AC、是某新区的三条规划路,其中AB=6km,AC=3km,∠BAC=60°,所对的圆心角为60°,新区管委会想在路边建物资总站点P,在AB,AC路边分别建物资分站点E、F,也就是,分别在、线段AB和AC上选取点P、E、F.由于总站工作人员每天都要将物资在各物资站点间按P→E→F→P的路径进行运输,因此,要在各物资站点之间规划道路PE、EF和FP.为了快捷、环保和节约成本.要使得线段PE、EF、FP之和最短,试求PE+EF+FP的最小值.(各物资站点与所在道路之间的距离、路宽均忽略不计)
共享时间:2018-07-02 难度:5 相似度:1.2
21716. (2021•石狮市石光中学•七模) 问题提出
(1)如图①,在等腰Rt△ABC中,∠ACB=90°,D是AB边上一点,以CD为腰作等腰Rt△CDE,连接BE,则AD与BE的数量关系是        ,位置关系是        
德优题库
问题探究
(2)如图②,AB是半圆O的直径,C、D是半圆O上两点,且AC=BC,若BD=3,AD=9,求CD的长;
问题解决
(3)如图③是某公园的一个面积为36π m2的圆形广场示意图,点O为圆心,公园开发部门计划在该广场内设计一个四边形运动区域ABDC,连接BC、AD,其中等边△ABC为球类运动区域,△BCD为散步区域,设AD的长为x,△BDC的面积为S.
①求S与x之间的函数关系式;
②按照设计要求,发现当点D为的中点时,布局设计最佳,求此时四边形运动区域ABDC的面积.
共享时间:2021-07-25 难度:5 相似度:1.1
3143. (2018•滨河中学•真题) 如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BCAB相交于点DE,连接AD.已知∠CAD=∠B
(1)求证:AD是⊙O的切线.
(2)若BC=8,tanB,求⊙O的半径.
德优题库
共享时间:2019-05-31 难度:3 相似度:1.07
19855. (2021•陕西省•真题) 问题提出
(1)如图1,在▱ABCD中,∠A=45°,AB=8,AD=6,EAD的中点,点FDC上,且DF=5,求四边形ABFE的面积.(结果保留根号)
问题解决
(2)某市进行河滩治理,优化美化人居生态环境.如图2所示,现规划在河畔的一处滩地上规划一个五边形河畔公园ABCDE.按设计要求,要在五边形河畔公园ABCDE内挖一个四边形人工湖OPMN,使点OPMN分别在边BCCDAEAB上,且满足BO=2AN=2CPAMOC.已知五边形ABCDE中,∠A=∠B=∠C=90°,AB=800mBC=1200mCD=600mAE=900m.为满足人工湖周边各功能场所及绿化用地需要,想让人工湖面积尽可能小.请问,是否存在符合设计要求的面积最小的四边形人工湖OPMN?若存在,求四边形OPMN面积的最小值及这时点N到点A的距离;若不存在,请说明理由.
共享时间:2021-06-25 难度:5 相似度:1.03
20863. (2020•高新一中•一模) 问题背景
(1)如图(1)△ABC内接于⊙O,过A作⊙O的切线l,在l上任取一个不同于点A的点P,连接PBPC,比较∠BPC与∠BAC的大小,并说明理由.
问题解决
(2)如图(2),A(0,2),B(0,4),在x轴正半轴上是否存在一点P,使得cos∠APB最小?若存在,求出P点坐标,若不存在,请说明理由.
拓展应用
(3)如图(3),在四边形ABCD中,ABCDADCDDEAB上一点,AEADPDE右侧四边形ABCD内一点,若AB=8,CD=11,tan∠C=2,SDEP=9,求sin∠APB的最大值.
共享时间:2020-06-18 难度:5 相似度:0.9
963. (2016•陕西省•真题) 问题提出
(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.
问题探究
(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.
问题解决
(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG= 米,∠EHG=45°,经研究,只有当点E、F、G分别在边AD、AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.
共享时间:2016-07-11 难度:5 相似度:0.9
508. (2018•陕西省•副题) 如图,在RtABC中,∠C90°,O是△ABC的外接圆,点DO上,且,过点DCB的垂线,与CB的延长线相交于点E,并与AB的延长线相交于点F
1)求证:DFO的切线;
2)若O的半径R5AC8,求DF的长.
共享时间:2018-07-03 难度:5 相似度:0.9
2897. (2019•永春华侨中学•模拟) 在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1
(1)如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数;
(2)如图2,连接AA1CC1.若△ABA1的面积为4,求△CBC1的面积;
(3)如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,求线段EP1长度的最大值与最小值.
共享时间:2019-05-28 难度:4 相似度:0.8
6043. (2017•铁一中学•模拟) 如图,在△ABC中,以AB为直径作半圆O,半圆O与BC相交于点D,半圆O与AC相交于点E,且点D为弧BE的中点,半圆O的切线BF与AC的延长线相交于点F.
(1)求证:AC=AB;
(2)若EF:AE=9:16,求sin∠CBF.
德优题库
共享时间:2017-05-30 难度:4 相似度:0.8
21112. (2021•交大附中•九模) 问题提出:
(1)如图①,在Rt△ABC中,∠ACB=90°,AC=6,BC=2,则∠A的大小为        
问题探究:
(2)如图②,在四边形ABCD中,AD∥BC,对角线AC与BD相交于O.若AC=8,BD=6,∠AOD=60°,求四边形ABCD的面积;
问题解决:
(3)在西安市“三河一山”生态绿道长廊建设中.规划将某条绿道一侧的四边形区域修建成主题公园.设计要求:如图③,四边形ABCD中,AD=160m,BC=CD,∠ABC=∠BCD=120°.求这个主题公园的最大面积.
德优题库
共享时间:2021-08-10 难度:5 相似度:0.73
19122. (2016•永春华侨中学•模拟) 问题探究
(1)请在图①的正方形ABCD的对角线BD上作一点P,使PA+PC最小;
(2)如图②,点P为矩形ABCD的对角线BD上一动点,AB=2,BC=2,点EBC边的中点,求作一点P,使PE+PC最小,并求这个最小值.
问题解决
(3)如图③,李师傅有一块边长为1000米的菱形ABCD采摘园,AC=1200米,BD为小路,BC的中点E为一水池,李师傅现在准备在小路BD上建一个游客临时休息纳凉室P,为了节省土地,使休息纳凉室P到水池E与大门C的距离之和最短,那么是否存在符合条件的点P?若存在,请作出的点P位置,并求出这个最短距离;若不存在,请说明理由.
共享时间:2016-06-20 难度:5 相似度:0.73
25711. (2023•陕西省•副题) (1)如图①,∠AOB=120°,点P在∠AOB的平分线上,OP=4.点E,F分别在边OA,OB上,且∠EPF=60°,连接EF.求线段EF的最小值;德优题库
(2)如图②,是一个圆弧型拱桥的截面示意图.点P是拱桥的中点,桥下水面的宽度AB=24m,点P到水面AB的距离PH=8m.点P1,P2均在上,=,且P1P2=10m,在点P1,P2处各装有一个照明灯,图中△P1CD和△P2EF分别是这两个灯的光照范围.两灯可以分别绕点P1,P2左右转动,且光束始终照在水面AB上.即∠CP1D,∠EP2F可分别绕点P1,P2按顺(逆)时针方向旋转(照明灯的大小忽略不计),线段CD,EF在AB上,此时,线段ED是这两灯照在水面AB上的重叠部分的水面宽度.已知∠CP1D=∠EP2F=90°,在这两个灯的照射下,当整个水面AB都被灯光照到时,求这两个灯照在水面AB上的重叠部分的水面宽度.(可利用备用图解答)
共享时间:2023-07-21 难度:5 相似度:0.73

艺黎

2017-07-10

初中数学 | 解答题

  • 下载量
  • 浏览量
  • 收益额
  • 0
  • 693
  • 0
相同试题
试题下载
试题内容
调用试题名称
共享人
唐老师
试题题型
解答题
试题难度
试题题源
2020*西工大*期末
下载次数
168次
下载金币
5德优币(当前结余18德优币)
温馨提示
该试题下载至自主题库后,下载、备课永久免费!
试卷设置
试卷名称
省市校区
阶段科目
年份卷型
选择类型
已选考点
在线训练
视频讲解
温馨提示
视频讲解正在加载中、请等待!
视频解析购买
支付方式
德优币数
本次消耗0德优币
温馨提示

客服电话:400-816-0029,服务邮箱:610066832@qq.com

视频资源

试题找茬
纠错类型
纠错描述
温馨提示
共享试题、试卷经平台审核通过后方可展示,并永久享用用户下载分红权!