首页 | 客服 | 上传赚现
(1)

服务热线

400-816-0029

    自建题库,共享分红

德优题库QQ交流群

80. (2020•十堰市•真题) 已知抛物线yax2﹣2ax+c过点A(﹣1,0)和C(0,3),与x轴交于另一点B,顶点为D
(1)求抛物线的解析式,并写出D点的坐标;
(2)如图1,E为线段BC上方的抛物线上一点,EFBC,垂足为FEMx轴,垂足为M,交BC于点G.当BGCF时,求△EFG的面积;
(3)如图2,ACBD的延长线交于点H,在x轴上方的抛物线上是否存在点P,使∠OPB=∠AHB?若存在,求出点P的坐标;若不存在,请说明理由.
共享时间:2021-01-06 难度:4
[考点]
根据实际问题列二次函数关系式   二次函数的应用题   
[答案]
答案详见解析
[解析]
解:(1)把点A(﹣1,0),C(0,3)代入yax2﹣2ax+c中,
解得
y=﹣x2+2x+3,
时,y=4,
D(1,4);

(2)如图1,∵抛物线y=﹣x2+2x+3,
y=0,
x=﹣1,或x=3,
B(3,0).
BC的解析式为ykx+bk≠0),
将点C(0,3),B(3,0)代入,得
解得
y=﹣x+3.
EFCB
设直线EF的解析式为yx+b,设点E的坐标为(m,﹣m2+2m+3),
将点E坐标代入yx+b中,得b=﹣m2+m+3,
yxm2+m+3,联立得


xm代入y=﹣x+3,得y=﹣m+3,
Gm,﹣m+3).
BGCF
BG2CF2,即
解得m=2或m=﹣3.
∵点EBC上方抛物线上的点,
m=﹣3,(舍去).
∴点E(2,3),F(1,2),G(2,1),

(3)如图2,过点AANHBN
∵点D(1,4),B(3,0),
yDB=﹣2x+6.
∵点A(﹣1,0),点C(0,3),
yAC=3x+3,联立得


,把(﹣1,0)代入,得b
,联立得



ANHN
∴∠H=45°.
设点Pn,﹣n2+2n+3).
过点PPRx轴于点R,在x轴上作点S使得RSPR
∴∠RSP=45°且点S的坐标为(﹣n2+3n+3,0).
若∠OPB=∠AHB=45°
在△OPS和△OPB中,∠POS=∠POB,∠OSP=∠OPB
∴△OPS∽△OBP

OP2OBOS
n2+(n+1)2n﹣3)2=3•(﹣n2+3n+3).
n=0或n=3(舍去).
P1(0,3),
     
[点评]
本题考查了"待定系数法求二次函数   根据实际问题列二次函   二次函数的应用题   ",属于"综合题",熟悉题型是解题的关键
转载声明:
本题解析属于发布者收集录入,如涉及版权请告知发布者本人!
781. (2019•陕西省•副题) 在平面直角坐标系中,抛物线L经过点A(﹣10),B30),C1,﹣2).
1)求抛物线L的表达式;
2)连接ACBC.以点D12)为位似中心,画△ABC′,使它与△ABC位似,且相似比为2A′、B′、C′分别是点ABC的对应点.试判定是否存在满足条件的点A′、B′在抛物线L上?若存在,求点A′、B′的坐标;若不存在,请说明理由.
共享时间:2019-07-10 难度:5 相似度:1.5
25782. (2024•高新一中•五模) 某校课外科技活动兴趣小组研制了一种航模飞机,这种航模飞机飞行的轨迹可以看作是抛物线的一部分.活动小组在水平安全线上设置一个高度可以变化的发射平台,当发射平台的高度变化时,飞机飞行的轨迹可视为抛物线上下平移得到.如图所示,以水平安全线上发射平台所在位置A为坐标原点,以水平安全线为x轴,建立平面直角坐标系.
通过实验,在A处发射飞机,收集到飞机相对于出发点的飞行水平距离x(单位:m)与飞行高度y(单位:m)的部分对应数值如表.
飞行水平距离x/m 0 20 30 50 80
飞行高度y/m 0 40 54 70 64
根据上面的信息,解决下列问题:
(1)当活动小组在A处发射飞机时,求飞机落到水平安全线时飞行水平距离;
(2)在水平安全线上设置回收区域MN,AM=125m,MN=5m,若飞机能落到回收区域MN内(不包括端点M,N),求发射平台相对于安全线的高度的变化范围.
德优题库
共享时间:2024-04-20 难度:4 相似度:1.5
70. (2019•榆林市•期末) 如图,抛物线yax2+bx+ca≠0)与直线ykxk≠0)相交于点M(1,1),N(3,3),且这条抛物线的对称轴为x=1.
(1)若将该抛物线平移使得其经过原点,且对称轴不变,求平移后的抛物线的表达式及k的值.
(2)设P为直线ykx下方的抛物线上一点,求△PMN面积的最大值及此时P点的坐标.
                                                                                                                                                  
共享时间:2021-01-06 难度:3 相似度:1
20157. (2021•漳州双语实验学校•四模) 某医药超市购进AB两种型号的防疫口罩,购进A型口罩花费25000元,购进B型口罩花费20000元,且购进的A型口罩是B型口罩数量的2倍,已知购进一包B型口罩比购进一包A型口罩多花30元.
(1)求购进一包A型口罩和一包B型口罩各需多少元?
(2)经过一段时间的试销,该医药超市发现B型口罩比较难销,所以对B型口罩进行了降价销售,当每包B型口罩定价为100元时,每天可以卖出8包,每降价1元,每天可多卖出2包,问B型口罩的售价为多少元时,医药超市当天卖B型口罩获利最大?
共享时间:2021-05-31 难度:4 相似度:1
68. (2019•永州市•真题) 如图,已知抛物线经过两点A(﹣3,0),B(0,3),且其对称轴为直线x=﹣1.
(1)求此抛物线的解析式;
(2)若点P是抛物线上点A与点B之间的动点(不包括点A,点B),求△PAB的面积的最大值,并求出此时点P的坐标.
                                                                                                                                                   
共享时间:2021-01-06 难度:4 相似度:0.83
76. (2020•陕西省•同步) 在平面直角坐标系中,抛物线yax2+bx﹣3过点A(﹣3,0),B(1,0),与y轴交于点C,顶点为点D
(1)求抛物线的解析式;
(2)点P为直线CD上的一个动点,连接BC
①如图1,是否存在点P,使∠PBC=∠BCO?若存在,求出所有满足条件的点P的坐标;若不存在,请说明理由;
②如图2,点Px轴上方,连接PA交抛物线于点N,∠PAB=∠BCO,点M在第三象限抛物线上,连接MN,当∠ANM=45°时,请直接写出点M的坐标.
共享时间:2021-01-06 难度:4 相似度:0.83
25710. (2023•陕西省•副题) 某加工厂要加工一种抛物线型钢材构件,如图所示,该抛物线型构件的底部宽度OM=12米,顶点P到底部OM的距离为9米.将该抛物线放入平面直角坐标系中,点M在x轴上.其内部支架有两个符合要求的设计方案:
方案一是“川”字形内部支架(由线段AB,PN,DC构成),点B,N,C在OM上,且OB=BN=NC=CM,点A,D在抛物线上,AB,PN,DC均垂直于OM;
方案二是“H”形内部支架(由线段A′B′,D′C′,EF构成),点B′,C′在OM上,且OB′=B′C′=C′M,点A′,D′在抛物线上,A′B′,D′C′均垂直于OM,E,F分别是A′B′,D′C′的中点.
(1)求该抛物线的函数表达式;
(2)该加工厂要用某一规格的钢材来加工这种构件,那么哪一个方案的内部支架节省材料?请说明理由.
德优题库
共享时间:2023-07-21 难度:2 相似度:0.83
66. (2020•达州市•真题) 如图,在平面直角坐标系xOy中,已知直线yx﹣2与x轴交于点A,与y轴交于点B,过AB两点的抛物线yax2+bx+cx轴交于另一点C(﹣1,0).
(1)求抛物线的解析式;
(2)在抛物线上是否存在一点P,使SPABSOAB?若存在,请求出点P的坐标,若不存在,请说明理由;
(3)点M为直线AB下方抛物线上一点,点Ny轴上一点,当△MAB的面积最大时,求MN+ON的最小值.
                                                                                                                                                    
共享时间:2021-01-06 难度:5 相似度:0.75
67. (2019•自贡市•期末) 如图,在平面直角坐标系中,已知抛物线yax2+bx﹣5与x轴交于A(﹣1.0).B(5,0)两点,与y轴交于点C
(1)求地物线的解析式;
(2)在地物线的对称轴上找一点M.使得MA+MC最小,请求出点M的坐标;
(3)在直线BC下方抛物线上是否存在点P,使得△PBC的面积最大?若存在.请求出点P的坐标;若不存在,请说明理由.
                                                                                                                                                   
共享时间:2021-01-06 难度:4 相似度:0.75
25627. (2023•爱知中学•二模) 如图1所示是一座古桥,桥拱截面为抛物线,如图2,AO,BC是桥墩,桥的跨径AB为20m,此时水位在OC处,桥拱最高点P离水面6m,在水面以上的桥墩AO,BC都为2m.以OC所在的直线为x轴、AO所在的直线为y轴建立平面直角坐标系,其中x(m)是桥拱截面上一点距桥墩AO的水平距离,y(m)是桥拱截面上一点距水面OC的距离.
德优题库
(1)求此桥拱截面所在抛物线的表达式;
(2)有一艘游船,其左右两边缘最宽处有一个长方体形状的遮阳棚,此船正对着桥洞在河中航行.当水位上涨2m时,水面到棚顶的高度为3m,遮阳棚宽12m,问此船能否通过桥洞?请说明理由.
共享时间:2023-04-28 难度:2 相似度:0.75
19854. (2021•陕西省•真题) 已知抛物线y=﹣x2+2x+8与x轴交于点AB(点A在点B的左侧),与y轴交于点C
(1)求点BC的坐标;
(2)设点C′与点C关于该抛物线的对称轴对称.在y轴上是否存在点P,使△PCC′与△POB相似,且PCPO是对应边?若存在,求出点P的坐标;若不存在,请说明理由.
共享时间:2021-06-25 难度:4 相似度:0.7
24638. (2022•陕西省•真题) 现要修建一条隧道,其截面为抛物线型,如图所示,线段OE表示水平的路面,以O为坐标原点,以OE所在直线为x轴,以过点O垂直于x轴的直线为y轴,建立平面直角坐标系.根据设计要求:OE10m,该抛物线的顶点POE的距离为9m
(1)求满足设计要求的抛物线的函数表达式;
(2)现需在这一隧道内壁上安装照明灯,如图所示,即在该抛物线上的点AB处分别安装照明灯.已知点ABOE的距离均为6m,求点AB的坐标.

 
共享时间:2022-06-21 难度:4 相似度:0.7
1145. (2020•陕西省•副题) 问题提出
(1)如图①,等边△ABC  条对称轴
问题探究
(2)如图②,在Rt△ABC中,∠A=90°,∠C=30°,BC=15,等边△EFP的顶点E,F分别在BA,BC上,且BE=BF=2.连接BP并延长,与AC交于点P′,过点P′作P′E′∥PE交AB于点E′,作P′F′∥PF交BC于点F′,连接E′F′,求S△P′E′F′
问题解决
(3)如图③,是一圆形景观区示意图,⊙O的直径为60m,等边△ABP的边AB是⊙O的弦,顶点P在⊙O内,延长AP交⊙O于点C,延长BP交⊙O于点D,连接CD.现准备在△PAB和△PCD区域内种植花卉,圆内其余区域为草坪.按照预算,要求花卉种植面积尽可能小,求花卉种植面积(S△PAB+S△PCD)的最小值.
德优题库
共享时间:2020-07-31 难度:5 相似度:0.67
21439. (2020•铁一中学•八模) 如图,抛物线经过点A44),B50)和原点O,点P为抛物线上的一个动点,过点Px轴的垂线,垂足为Dm0)(m0),并与直线OA交于点C
1)求出抛物线的函数表达式;
2)连接OP,当SOPCSOCD时,求出此时的点P坐标;
3)在直线OA上取一点M,使得以PCM为顶点的三角形与△OCD全等,请直接写出点M的坐标.
共享时间:2020-07-21 难度:4 相似度:0.67
21111. (2021•石狮市石光中学•九模) 如图,在平面直角坐标系中,抛物线W1:y=x2+bx+c与x轴交于A(-4,0)、B两点,且过点C(0,-2).抛物线W2与抛物线W1关于原点对称,点C在W2上的对应点为C′.
(1)求抛物线W1的表达式;
(2)写出抛物线W2的表达式;
(3)若点P在抛物线W1上,试探究:在抛物线W2上是否存在点Q,使以C、C′、P、Q为顶点的四边形是平行四边形,并且其面积等于24?若存在,求点Q的坐标;若不存在,请说明理由.
共享时间:2021-08-10 难度:4 相似度:0.63

亦世凡华

2021-01-06

初中数学 | 解答题

  • 下载量
  • 浏览量
  • 收益额
  • 0
  • 703
  • 0
相同试题
试题下载
试题内容
调用试题名称
共享人
唐老师
试题题型
解答题
试题难度
试题题源
2020*西工大*期末
下载次数
168次
下载金币
5德优币(当前结余18德优币)
温馨提示
该试题下载至自主题库后,下载、备课永久免费!
试卷设置
试卷名称
省市校区
阶段科目
年份卷型
选择类型
已选考点
在线训练
视频讲解
温馨提示
视频讲解正在加载中、请等待!
视频解析购买
支付方式
德优币数
本次消耗0德优币
温馨提示

客服电话:400-816-0029,服务邮箱:610066832@qq.com

视频资源

试题找茬
纠错类型
纠错描述
温馨提示
共享试题、试卷经平台审核通过后方可展示,并永久享用用户下载分红权!