首页 | 客服 | 上传赚现
(1)

服务热线

400-816-0029

    自建题库,共享分红

德优题库QQ交流群

20185. (2021•西工大附中•五模) 在平面直角坐标系中,经过点(1,﹣10),(2,﹣12)的抛物线yax2+bx﹣6与x轴交于AB两点(A点在B点的左侧),与y轴交于点C
(1)求此抛物线的函数表达式;
(2)在抛物线确定一点P,使∠ACP=90°,求点P的坐标;
(3)是否在x轴上存在点M,使∠OCM+∠ACO=45°,若存在,求出点M的坐标;若不存在,请说明理由.
共享时间:2021-06-03 难度:4
[考点]
求二次函数的解析式   二次函数的图像   二次函数的性质   二次函数的增减性   二次函数的动点问题   二次函数综合应用   等腰三角形的性质   锐角三角函数    
[答案]
答案详见解答
[解析]
解:(1)由题意可得:
解得:
∴抛物线的解析式为yx2﹣5x﹣6;
(2)∵抛物线的解析式为yx2﹣5x﹣6与y轴交于点C,与x轴交于点A,点B
∴点(0,﹣6),点A(﹣1,0),点B(6,0),
OA=1,OCOB=6,
如图1,过点PPHy轴于H

∴∠PHC=∠AOC=∠ACP=90°,
∴∠ACO+∠PCO=90°=∠PCO+∠CPH
∴∠ACO=∠CPH
设点Pxx2﹣5x﹣6),
∵tan∠ACO=tan∠CPH

解得:x1=0,x2
∴点P,﹣);
(3)如图2,当点MOC的右侧时,过点MMNBCN

OBOC=6,
∴∠OCB=∠OBC=45°,BC=6
∴∠OBC=∠NMB=45°,
MNBNBMBN
∵∠OCM+∠ACO=45°,∠OCM+∠BCM=45°,
∴∠ACO=∠BCM
∴tan∠ACO=tan∠BCM
CN=6MN=6BN
CN+BNBC=6
BNMN
BMBN
OMOBBM
∴点M坐标为(,0);
当点M'在OC的左侧,
∵∠OCM+∠ACO=45°=∠OCM'+∠ACO
∴∠OCM'=∠OCM
OCAB
∴∠CMM'=∠CM'M
CMCM',
OMOM'=
∴点M'(﹣,0);
综上所述:点M坐标为(﹣,0)或(,0).
[点评]
本题考查了"求二次函数的解析式,二次函数的图像,二次函数的性质,二次函数的增减性,二次函数的动点问题,二次函数综合应用,等腰三角形的性质,锐角三角函数 ",属于"综合题",熟悉知识点是解题的关键。
转载声明:
本题解析属于发布者收集录入,如涉及版权请告知发布者本人!
23921. (2022•高新一中•二模) 如图,已知抛物线y=-x2+bx+c与直线AB交于点A(-1,4),点B(3,0).
(1)求抛物线的函数关系式;
(2)点M是x轴上方抛物线上一点,点N是直线AB上一点,若以B、O、M、N为顶点的四边形是以OB为边的平行四边形,求点M的坐标.
德优题库
共享时间:2022-03-14 难度:4 相似度:1.46
20160. (2021•漳州双语实验学校•四模) 在平面直角坐标系中,抛物线Lyx2﹣2x﹣3与y轴交于点C,点D为抛物线的顶点.
(1)求点C、点D的坐标;
(2)将抛物线L向右平移mm>0)个单位得到抛物线L',抛物线LL'的交点为P,若△PCD是以CD为直角边的直角三角形,请求出m的值.
共享时间:2021-05-31 难度:4 相似度:1.46
6244. (2017•晋江市南侨中学•模拟) 如图,在平面直角坐标系中,点O为坐标原点.已知:抛物线yax2+bx+3经过点P(1,4)和点Q(2,﹣3).
(1)试判断该抛物线与x轴交点的情况.
(2)平移这条抛物线,使平移后的抛物线经过点A(2,0),且与y轴交于点B,同时满足以AOB为顶点的三角形是等腰直角三角形.请你写出平移过程,并说明理由.
                                                                                                        
共享时间:2017-07-03 难度:4 相似度:1.3
25684. (2023•陕西省•真题) 某校想将新建图书楼的正门设计为一个抛物线型拱门,并要求所设计的拱门的跨度与拱高之积为48m2,还要兼顾美观、大方,和谐、通畅等因素,设计部门按要求给出了两个设计方案.现把这两个方案中的拱门图形放入平面直角坐标系中,如图所示:
方案一,抛物线型拱门的跨度ON=12m,拱高PE=4m.其中,点N在x轴上,PE⊥ON,OE=EN.
方案二,抛物线型拱门的跨度ON′=8m,拱高P'E'=6m.其中,点N′在x轴上,P′E′⊥O′N′,OE′=E′N′.
要在拱门中设置高为3m的矩形框架,其面积越大越好(框架的粗细忽略不计).方案一中,矩形框架ABCD的面积记为S1,点A、D在抛物线上,边BC在ON上;方案二中,矩形框架A'B'C′D'的面积记为S2,点A',D'在抛物线上,边B'C'在ON'上.现知,小华已正确求出方案二中,当A'B'=3m时,S2=12m2,请你根据以上提供的相关信息,解答下列问题:
(1)求方案一中抛物线的函数表达式;
(2)在方案一中,当AB=3m时,求矩形框架ABCD的面积S1并比较S1,S2的大小.
德优题库
共享时间:2023-07-20 难度:2 相似度:1.25
19253. (2016•西工大附中•模拟) 如图,在平面直角坐标系中,抛物线W1y=﹣x2+6x﹣5与x轴交于AB两点,点C是该抛物线的顶点.
(1)若抛物线W1与抛物线W2关于直线x=﹣1对称,其中,点C与点F,点E与点B,点D与点A是对应点,求抛物线W2的表达式.
(2)连接BC,在直线x=﹣1上找一点H,使得△BCH周长最小,并求出点H的坐标.
(3)连接FD,点P是直线x=﹣1上一点,点Q是抛物线W1上一点,若以点DFPQ为顶点的四边形是平行四边形,请求出符合条件的点Q的坐标.

 
共享时间:2016-06-06 难度:4 相似度:1.17
20479. (2020•铁一中学•八模) 如图,抛物线经过点A44),B50)和原点O,点P为抛物线上的一个动点,过点Px轴的垂线,垂足为Dm0)(m0),并与直线OA交于点C
1)求出抛物线的函数表达式;
2)连接OP,当SOPCSOCD时,求出此时的点P坐标;
3)在直线OA上取一点M,使得以PCM为顶点的三角形与△OCD全等,请直接写出点M的坐标.
共享时间:2020-07-27 难度:4 相似度:1.17
19121. (2016•永春华侨中学•模拟) 已知抛物线经过A(﹣4,0),B(0,﹣4),C(2,0)三点.
(1)求抛物线的解析式;
(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S,求S关于m的函数关系式,并求S的最大值;
(3)若点P是抛物线上的动点,点Q是直线y=﹣x上的动点,使得点PQBO的四边形为平行四边形,求Q的坐标.

 
共享时间:2016-06-20 难度:4 相似度:1.17
21439. (2020•铁一中学•八模) 如图,抛物线经过点A44),B50)和原点O,点P为抛物线上的一个动点,过点Px轴的垂线,垂足为Dm0)(m0),并与直线OA交于点C
1)求出抛物线的函数表达式;
2)连接OP,当SOPCSOCD时,求出此时的点P坐标;
3)在直线OA上取一点M,使得以PCM为顶点的三角形与△OCD全等,请直接写出点M的坐标.
共享时间:2020-07-21 难度:4 相似度:1.17
6168. (2014•德州市•真题) 如图,在平面直角坐标系中,已知点A的坐标是(4,0),并且OAOC=4OB,动点P在过ABC三点的抛物线上.
(1)求抛物线的解析式;
(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;
(3)过动点PPE垂直于y轴于点E,交直线AC于点D,过点Dx轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.
共享时间:2017-06-21 难度:4 相似度:1.17
23818. (2021•益新中学•五模) 已知二次函数y=x2+bx+c经过A、B两点,BC垂直x轴于点C,且A(-1,0),C(4,0),AC=BC.
(1)求抛物线的解析式;
(2)请画出抛物线的图象;
(3)点P是抛物线对称轴上一个动点,是否存在这样的点P,使三角形ABP为直角三角形?若存在,求出P点坐标;若不存在,请说明理由.
德优题库
共享时间:2021-06-18 难度:4 相似度:1.17
1093. (2020•陕西省•真题) 如图,抛物线yx2+bx+c经过点(3,12)和(﹣2,﹣3),与两坐标轴的交点分别为ABC,它的对称轴为直线l
(1)求该抛物线的表达式;
(2)P是该抛物线上的点,过点Pl的垂线,垂足为DEl上的点.要使以PDE为顶点的三角形与△AOC全等,求满足条件的点P,点E的坐标.
                                                                                                                            
共享时间:2020-07-30 难度:4 相似度:1.13
1051. (2019•陕西省•真题) 在平面直角坐标系中,已知抛物线Lyax2+cax+c经过点A(﹣30)和点B0,﹣6),L关于原点O对称的抛物线为L′.
1)求抛物线L的表达式;
2)点P在抛物线L′上,且位于第一象限,过点PPDy轴,垂足为D.若△POD与△AOB相似,求符合条件的点P的坐标.
                                                                                                                           
共享时间:2019-07-05 难度:5 相似度:1.13
2896. (2015•云南省•真题) 如图,在平面直角坐标系中,抛物线yax2+bx+ca≠0)与x轴相交于AB两点,与y轴相交于点C,直线ykx+nk≠0)经过BC两点,已知A(1,0),C(0,3),且BC=5.
(1)分别求直线BC和抛物线的解析式(关系式);
(2)在抛物线的对称轴上是否存在点P,使得以BCP三点为顶点的三角形是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.
                                                                                                                               
共享时间:2019-05-28 难度:4 相似度:1.13
880. (2013•陕西省•真题) 在平面直角坐标系中,一个二次函数的图象经过点A(1,0)、B(3,0)两点.
(1)写出这个二次函数图象的对称轴;
(2)设这个二次函数图象的顶点为D,与y轴交于点C,它的对称轴与x轴交于点E,连接AC、DE和DB,当△AOC与△DEB相似时,求这个二次函数的表达式.
[提示:如果一个二次函数的图象与x轴的交点为A(x1,0)、B(x2,0),那么它的表达式可表示为y=a(x﹣x1)(x﹣x2)].
                                                                                           
 
共享时间:2013-11-18 难度:3 相似度:1.13
809. (2015•陕西省•真题) 在平面直角坐标系中,抛物线y=x2+5x+4的顶点为M,与x轴交于A,B两点,与y轴交于C点.
(1)求点A,B,C的坐标;
(2)求抛物线y=x2+5x+4关于坐标原点O对称的抛物线的函数表达式;
(3)设(2)中所求抛物线的顶点为M′,与x轴交于A′,B′两点,与y轴交于C′点,在以A,B,C,M,A′,B′,C′,M′这八个点中的四个点为顶点的平行四边形中,求其中一个不是菱形的平行四边形的面积.
共享时间:2015-08-18 难度:4 相似度:1.13

dcyx2021

2021-06-03

初中数学 | 解答题

  • 下载量
  • 浏览量
  • 收益额
  • 0
  • 747
  • 0
相同试题
试题下载
试题内容
调用试题名称
共享人
唐老师
试题题型
解答题
试题难度
试题题源
2020*西工大*期末
下载次数
168次
下载金币
5德优币(当前结余18德优币)
温馨提示
该试题下载至自主题库后,下载、备课永久免费!
试卷设置
试卷名称
省市校区
阶段科目
年份卷型
选择类型
已选考点
在线训练
视频讲解
温馨提示
视频讲解正在加载中、请等待!
视频解析购买
支付方式
德优币数
本次消耗0德优币
温馨提示

客服电话:400-816-0029,服务邮箱:610066832@qq.com

视频资源

试题找茬
纠错类型
纠错描述
温馨提示
共享试题、试卷经平台审核通过后方可展示,并永久享用用户下载分红权!