首页 | 客服 | 上传赚现
(1)

服务热线

400-816-0029

    自建题库,共享分红

德优题库QQ交流群

21202. (2019•爱知中学•一模) 如图,在平面直角坐标系中,点O为坐标原点,抛物线L1:y=x2+bx+c经过A(1,0),且与y轴交轴点D(0,3).
(1)求抛物线L1的函数表达式;
(2)连接AD,将抛物线L1绕平面内一个点M旋转180°得到抛物线L2,其中A的对应点为C,D的对应点为B,若四边形ABCD是面积为20的矩形,求抛物线L2的函数表达式.
德优题库
共享时间:2019-05-20 难度:4
[考点]
一次函数图象与几何变换   二次函数的性质   二次函数图象与几何变换   
[答案]
(1)抛物线L1的函数表达式为y=x2-4x+3;
(2)抛物线L2为y=-(x-5)2+6或y=-(x+7)2+2.
[解析]
解:∵抛物线L1yx2+bx+c经过A10),且与y轴交轴点D03),
,解得
∴抛物线L1的函数表达式为yx24x+3
2)如图,作BMx轴于M
∵四边形ABCD是矩形,
DAAB
∴∠DAO+BAM90°,
∵∠DAO+ADO90°,
∴∠ADO=∠BAM
∵∠AOD=∠BMA90°,
∴△AMB∽△DOA

OA1OD3
AD
∵矩形ABCD是面积为20
ADAB20
AB
2
AM2OD6BM2OA2
B72)或(5,﹣2),
∴点M为()或(﹣),
∵抛物线L1yx24x+3=(x221
∴抛物线L1的顶点为(2,﹣1),
∴旋转后的顶点为(56)或(﹣72
∴抛物线L2y=﹣(x52+6y=﹣(x+72+2

 
[点评]
本题考查了待定系数法求二次函数的解析式,二次函数的图像与几何变换,求得A、D对应点的坐标,从而求得M的坐标是解题的关键.
转载声明:
本题解析属于发布者收集录入,如涉及版权请告知发布者本人!
848. (2014•陕西省•真题) 已知抛物线C:y=﹣x2+bx+c经过A(﹣3,0)和B(0,3)两点,将这条抛物线的顶点记为M,它的对称轴与x轴的交点记为N.
(1)求抛物线C的表达式;
(2)求点M的坐标;
(3)将抛物线C平移到抛物线C′,抛物线C′的顶点记为M′,它的对称轴与x轴的交点记为N′.如果以点M、N、M′、N′为顶点的四边形是面积为16的平行四边形,那么应将抛物线C怎样平移?为什么?
 
共享时间:2014-09-18 难度:3 相似度:1.34
4763. (2018••模拟) 在平面直角坐标系xOy中,抛物线Cyx2+(3﹣mx经过点A(﹣2,0).
(1)将抛物线C沿直线y=1轴对称的抛物线记为C1,求抛物线C1的顶点坐标;
(2)将抛物线C沿直线yn轴对称的抛物线记为C2,设CC2的交点记为点M,点NC的顶点记为FC2的顶点记为E,若四边形MFNE中有一个内角等于60°,求C2的解析式.
                            德优题库
共享时间:2018-06-27 难度:4 相似度:1.34
60. (2013•泉州市•真题) 已知抛物线yax﹣3)2+2经过点(1,﹣2).
(1)求a的值;
(2)若点Amy1)、Bny2)(mn<3)都在该抛物线上,试比较y1y2的大小.
共享时间:2020-12-28 难度:3 相似度:1.33
61. (2020•北京市•真题) 在平面直角坐标系xOy中,Mx1y1),Nx2y2)为抛物线yax2+bx+ca>0)上任意两点,其中x1x2
(1)若抛物线的对称轴为x=1,当x1x2为何值时,y1y2c
(2)设抛物线的对称轴为xt,若对于x1+x2>3,都有y1y2,求t的取值范围.
共享时间:2020-12-28 难度:3 相似度:1.33
19854. (2021•陕西省•真题) 已知抛物线y=﹣x2+2x+8与x轴交于点AB(点A在点B的左侧),与y轴交于点C
(1)求点BC的坐标;
(2)设点C′与点C关于该抛物线的对称轴对称.在y轴上是否存在点P,使△PCC′与△POB相似,且PCPO是对应边?若存在,求出点P的坐标;若不存在,请说明理由.
共享时间:2021-06-25 难度:4 相似度:1.07
6344. (2017•永春三中•模拟) 如图,直线AB与抛物线l:y=-x2+bx+c分别交于A(0,5),B(5,0)两点,这条抛物线的顶点为C,对称轴与直线AB交于点D.
(1)求抛物线l的函数表达式,并直接写出点C、D的坐标.
(2)将抛物线平移,平移后的抛物线顶点记为C′,对称轴与x轴的交点记为E,如果以C、D、C′、E为顶点的四边形是菱形,那么应将抛物线l怎样平移?为什么?
德优题库
共享时间:2017-06-08 难度:4 相似度:0.96
23085. (2021•高新一中•九上期中) 求下列二次函数图象的对称轴和顶点坐标:
(1)y=x2-4x-1;
(2)y=-2x2-5x+7.
共享时间:2021-11-25 难度:3 相似度:0.83
23397. (2020•铁一中学•八上二月) 已知直线l1:y=x-3与x轴、y轴分别交于点A和点B.
(1)求点A和点B的坐标;
(2)将直线l1向上平移6个单位后得到直线l2,点M是直线l2上一点,且横坐标为-2,求△MAB的面积.
共享时间:2021-12-15 难度:3 相似度:0.83
1000. (2018•陕西省•真题) 已知抛物线L:y=x2+x﹣6与x轴相交于A、B两点(点A在点B的左侧),并与y轴相交于点C.
(1)求A、B、C三点的坐标,并求△ABC的面积;
(2)将抛物线L向左或向右平移,得到抛物线L′,且L′与x轴相交于A'、B′两点(点A′在点B′的左侧),并与y轴相交于点C′,要使△A'B′C′和△ABC的面积相等,求所有满足条件的抛物线的函数表达式.
共享时间:2018-07-02 难度:4 相似度:0.83
70. (2019•榆林市•期末) 如图,抛物线yax2+bx+ca≠0)与直线ykxk≠0)相交于点M(1,1),N(3,3),且这条抛物线的对称轴为x=1.
(1)若将该抛物线平移使得其经过原点,且对称轴不变,求平移后的抛物线的表达式及k的值.
(2)设P为直线ykx下方的抛物线上一点,求△PMN面积的最大值及此时P点的坐标.
                                                                                                                                                  
共享时间:2021-01-06 难度:3 相似度:0.83
920. (2017•陕西省•真题) 在同一直角坐标系中,抛物线C1:y=ax2﹣2x﹣3与抛物线C2:y=x2+mx+n关于y轴对称,C2与x轴交于A、B两点,其中点A在点B的左侧.
(1)求抛物线C1,C2的函数表达式;
(2)求A、B两点的坐标;
(3)在抛物线C1上是否存在一点P,在抛物线C2上是否存在一点Q,使得以AB为边,且以A、B、P、Q四点为顶点的四边形是平行四边形?若存在,求出P、Q两点的坐标;若不存在,请说明理由.
                                                                                                                   
共享时间:2017-07-10 难度:4 相似度:0.66
90. (2020•宜昌市•同步) 在平面直角坐标系中,直线y=﹣3xx轴于点A,交y轴于点B,直线y=﹣x+3x轴于点C,交y轴于点D
1)如图1,连接BC,求△BCD的面积;
2)如图2,在直线y=﹣x+3上存在点E,使得∠ABE45°,求点E的坐标;
3)如图3,在(2)的条件下,连接OE,过点ECD的垂线交y轴于点F,点P在直线EF上,在平面中存在一点Q,使得以OE为一边,OEPQ为顶点的四边形为菱形,请直接写出点Q的坐标.
共享时间:2021-01-06 难度:4 相似度:0.66
1144. (2020•陕西省•副题) 已知抛物线L:y=-x2+bx+c过点(-3,3)和(1,-5),与x轴的交点为A,B(点A在点B的左侧).
(1)求抛物线L的表达式;
(2)若点P在抛物线L上,点E、F在抛物线L的对称轴上,D是抛物线L的顶点,要使△PEF∽△DAB(P的对应点是D),且PE:DA=1:4,求满足条件的点P的坐标.
德优题库
共享时间:2020-07-31 难度:4 相似度:0.66
68. (2019•永州市•真题) 如图,已知抛物线经过两点A(﹣3,0),B(0,3),且其对称轴为直线x=﹣1.
(1)求此抛物线的解析式;
(2)若点P是抛物线上点A与点B之间的动点(不包括点A,点B),求△PAB的面积的最大值,并求出此时点P的坐标.
                                                                                                                                                   
共享时间:2021-01-06 难度:4 相似度:0.66
63. (2019•湘潭市•真题) 如图一,抛物线yax2+bx+cA(﹣1,0)、B(3,0)、C(0,)三点.

(1)求该抛物线的解析式;
(2)Px1y1)、Q(4,y2)两点均在该抛物线上,若y1y2,求P点横坐标x1的取值范围;
(3)如图二,过点Cx轴的平行线交抛物线于点E,该抛物线的对称轴与x轴交于点D,连结CDCB,点F为线段CB的中点,点MN分别为直线CDCE上的动点,求△FMN周长的最小值.
共享时间:2021-01-06 难度:4 相似度:0.66

dcyx2021

2019-05-20

初中数学 | 解答题

  • 下载量
  • 浏览量
  • 收益额
  • 0
  • 340
  • 0
相同试题
试题下载
试题内容
调用试题名称
共享人
唐老师
试题题型
解答题
试题难度
试题题源
2020*西工大*期末
下载次数
168次
下载金币
5德优币(当前结余18德优币)
温馨提示
该试题下载至自主题库后,下载、备课永久免费!
试卷设置
试卷名称
省市校区
阶段科目
年份卷型
选择类型
已选考点
在线训练
视频讲解
温馨提示
视频讲解正在加载中、请等待!
视频解析购买
支付方式
德优币数
本次消耗0德优币
温馨提示

客服电话:400-816-0029,服务邮箱:610066832@qq.com

视频资源

试题找茬
纠错类型
纠错描述
温馨提示
共享试题、试卷经平台审核通过后方可展示,并永久享用用户下载分红权!