首页 | 客服 | 上传赚现
(1)

服务热线

400-816-0029

    自建题库,共享分红

德优题库QQ交流群

20186. (2021•西工大附中•五模) 问题提出
(1)如图①,在Rt△ABC中,∠ACB=90°,ACBC.过点C作直线l,再分别过点ABAMlMBNlN.则线段MNAMBN之间的数量关系为___________
(2)如图②,在Rt△ABC中,∠C=90°,AC=30,BC=40,点PAB上,点EF分别是边ACBC上,且∠ABC=∠FPBPEPF.设BPx,求四边形CEPF的面积yx之间的函数关系式;
(3)如图③是一个圆形广场,其中四边形ACBD规划为园林绿化区(四个顶点均在圆上),且要求∠ACB=90°,AC=30米,BC=40米,连接ABCD交于点P.为了更好的美化环境,需要在ACBC边上分别确定点EF,且满足∠ABC=∠FPBPEPF.为了整体布局,计划在四边形CEPF内种植花卉,在四边形ACBD剩余区域种植草坪.已知花卉每平方米的价格是60元,草坪每平方米的价格是90元,从实用角度希望四边形CEPF的面积最大.根据设计要求,求出当四边形CEPF的面积最大时种植花卉和草坪的总费用.

 
共享时间:2021-06-03 难度:5
[考点]
配方法的应用   二次函数的图像   二次函数的性质   二次函数与面积最值问题   全等三角形的判定与性质   相似三角形的判定与性质   四边形的面积最大值问题   圆的综合题   
[答案]
答案详见解答
[解析]
证明:(1)如图①,
AMlMBNlN
∴∠AMC=∠CNB=90°,
∴∠MAC+∠ACM=90°,
∵∠ACB=90°,
∴∠ACM+∠NCB=90°,
∴∠MAC=∠NCB
∵在△ACM和△CBN中,

∴△ACM≌△CBNAAS),
AMCNCMBN
MNMC+CNAM+BN
(2)∵∠C=90°,AC=30,BC=40,
∴∠A+∠B=90°,AB=50,
PEPF
∴∠FPE=90°,
∴∠FPB+∠EPA=90°,
∵∠B=∠FPB
∴∠EPA=∠A
过点FFMAB于点M,过点EENAB于点N
BMBPxPNAP(50﹣x),
∵∠FBM=∠ABC,∠BMF=∠BCA=90°,
∴△BMF∽△BCA
,即
FMx
同理,,即
EN
S四边形FPECSABCSFBPSEPA×40×30﹣xx•(50﹣x)•
y=﹣+
(3)由(2)知:y=﹣+
∴当x=32时,y有最大值,
即:S四边形FPEC最大值=﹣×322+×32﹣=300,
此时,CPAB
∵∠ACB=90°,
AB是直径,
CPDP,即点CD关于直线AB对称,
S四边形ACBD=2SABC=1200,
∴总费用=60×300+(1200﹣300)×90=99000(元).
[点评]
本题考查了"配方法的应用,二次函数的图像,二次函数的性质,二次函数与面积最值问题,全等三角形的判定与性质,相似三角形的判定与性质,四边形的面积最大值问题,圆的综合题",属于"压轴题",熟悉题型和考点是解题的关键。
转载声明:
本题解析属于发布者收集录入,如涉及版权请告知发布者本人!
23922. (2022•高新一中•二模) 问题提出
(1)如图①,△ABC为等边三角形,若AB=2,则△ABC的面积为        
问题探究
(2)如图②,在Rt△ABC中,∠ABC=90°,AC=3,BD是△ABC的角平分线,过点D作DE⊥BD交BC边于点E.若AD=1,求图中阴影部分的面积.
问题解决
(3)如图③,是某公园的一个圆形施工区示意图,其中⊙O的半径是4米,公园开发部门计划在该施工区内设计一个四边形绿化区域ABCD,连接AC、BD,现准备在△ADC区域种植花卉供游人欣赏.按设计要求,A、B、C、D四个点都在圆上,∠ADB=∠BDC=60°.设BD的长为x米,△ADC的面积为y平方米.
①求y与x之间的函数关系式;
②按照设计要求,为让游人有更好的观赏体验,△ADC花卉区域的面积越大越好,那么请求出花卉区域△ADC面积的最大值.
德优题库
共享时间:2022-03-14 难度:5 相似度:1.19
1045. (2019•陕西省•真题) 如图,点AEFB在直线l上,AEBFACBD,且ACBD,求证:CFDE
                                                                                                                     
共享时间:2019-07-05 难度:3 相似度:1.13
20179. (2021•西工大附中•五模) 如图,ABCD,点ECB的延长线上,连接BD,∠A=∠EACED.求证:∠CBD=∠CDB
共享时间:2021-06-03 难度:3 相似度:1.13
838. (2014•陕西省•真题) 如图,在Rt△ABC中,∠ABC=90°,点D在边AB上,使DB=BC,过点D作EF⊥AC,分别交AC于点E,CB的延长线于点F.
求证:AB=BF.

                                                                                                                  
共享时间:2014-09-18 难度:2 相似度:1.13
806. (2015•陕西省•真题) 如图,在△ABC中,AB=AC,作AD⊥AB交BC的延长线于点D,作AE∥BD,CE⊥AC,且AE,CE相交于点E,求证:AD=CE.

 
共享时间:2015-08-18 难度:3 相似度:1.13
775. (2019•陕西省•副题) 如图,在△ABC中,DBC边的中点,过点DDEAB,并与AC交于点E,延长DE到点F,使得EFDE,连接AF
求证:AFBC
共享时间:2019-07-10 难度:3 相似度:1.13
21196. (2019•爱知中学•一模) 如图,已知AC⊥AB于点A,BD⊥AB于点B,AF=BE,CE=DF,求证:∠C=∠D.
共享时间:2019-05-20 难度:3 相似度:1.13
61. (2020•北京市•真题) 在平面直角坐标系xOy中,Mx1y1),Nx2y2)为抛物线yax2+bx+ca>0)上任意两点,其中x1x2
(1)若抛物线的对称轴为x=1,当x1x2为何值时,y1y2c
(2)设抛物线的对称轴为xt,若对于x1+x2>3,都有y1y2,求t的取值范围.
共享时间:2020-12-28 难度:3 相似度:1.13
6239. (2017•晋江市南侨中学•模拟) 如图,点ACDB四点共线,且ACBD,∠A=∠B,∠ADE=∠BCF,求证:DECF
                                                                                                                                  
共享时间:2017-07-03 难度:3 相似度:1.13
24220. (2021•交大附中•七下期中) 如图,在四边形ABCD中,AB∥CD,∠1=∠2,AD=EC.
(1)求证:△ABD≌△EDC;
(2)若AB=2,BE=3,求CD的长.
德优题库
共享时间:2021-05-06 难度:4 相似度:1.13
24841. (2022•爱知中学•八下期中) 如图,AD⊥BD,AC⊥BC,AD与BC交于点O,AD=BC.
求证:OC=OD.
德优题库
共享时间:2022-05-25 难度:3 相似度:1.13
25103. (2022•铁一中学•八下期中) 如图,在△ABC中,AB=AC,点D,E,F,分别在AB,BC,AC边上,且BE=CF,BD=CE,∠A=30°,求∠DEF的度数.
德优题库
共享时间:2022-05-18 难度:3 相似度:1.13
25677. (2023•陕西省•真题) 如图,在△ABC中,∠B=50°,∠C=20°.过点A作AE⊥BC,垂足为E,延长EA至点D.使AD=AC.在边AC上截取AF=AB,连接DF.求证:DF=CB.
德优题库
共享时间:2023-07-20 难度:3 相似度:1.13
25804. (2024•西北大附中•一模) 如图,在△ABD和△ACE中,AB=AC,BD⊥AC于点D,CE⊥AB于点E,BD、CE相交于点F,求证:BE=CD.
德优题库
共享时间:2024-03-13 难度:3 相似度:1.13
27756. (2023•石狮市石光中学•九上二月) 【直接运用】(1)如图1,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径的半圆交AB于D,P是弧CD上的一个动点,连接AP,则AP的最小值是        ;【构造运用】(2)如图2,在平行四边形ABCD中,AB=4,AD=6,∠A=120°,点F、点N分别为CD、AB的中点,点E在边AD上运动,将△EDF沿EF折叠,使得点D落在D′处,连接BD′,点M为BD′中点,求MN的最小值;
【灵活运用】(3)如图3,已知正方形ABCD的边长为6,点M、N分别从点B、C同时出发,以相同的速度沿边BC、CD方向向终点C和D运动,连接AM和BN交于点P,则点P到点C的最短距离,并说明理由.
德优题库
共享时间:2023-10-10 难度:1 相似度:1.13

dcyx2021

2021-06-03

初中数学 | 解答题

  • 下载量
  • 浏览量
  • 收益额
  • 0
  • 580
  • 0
相同试题
试题下载
试题内容
调用试题名称
共享人
唐老师
试题题型
解答题
试题难度
试题题源
2020*西工大*期末
下载次数
168次
下载金币
5德优币(当前结余18德优币)
温馨提示
该试题下载至自主题库后,下载、备课永久免费!
试卷设置
试卷名称
省市校区
阶段科目
年份卷型
选择类型
已选考点
在线训练
视频讲解
温馨提示
视频讲解正在加载中、请等待!
视频解析购买
支付方式
德优币数
本次消耗0德优币
温馨提示

客服电话:400-816-0029,服务邮箱:610066832@qq.com

视频资源

试题找茬
纠错类型
纠错描述
温馨提示
共享试题、试卷经平台审核通过后方可展示,并永久享用用户下载分红权!