[考点]
二次函数图象与几何变换   二次函数综合应用   坐标与轴对称   
[解析]
解:(1)∵C1、C2关于y轴对称,
∴C1与C2的交点一定在y轴上,且C1与C2的形状、大小均相同,
∴a=1,n=﹣3,
∴C1的对称轴为x=1,
∴C2的对称轴为x=﹣1,
∴m=2,
∴C1的函数表示式为y=x2﹣2x﹣3,C2的函数表达式为y=x2+2x﹣3;
(2)在C2的函数表达式为y=x2+2x﹣3中,令y=0可得x2+2x﹣3=0,解得x=﹣3或x=1,
∴A(﹣3,0),B(1,0);
(3)存在.
∵AB只能为平行四边形的一边,
∴PQ∥AB且PQ=AB,
由(2)可知AB=1﹣(﹣3)=4,
∴PQ=4,
设P(t,t2﹣2t﹣3),则Q(t+4,t2﹣2t﹣3)或(t﹣4,t2﹣2t﹣3),
①当Q(t+4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t+4)2+2(t+4)﹣3,解得t=﹣2,
∴t2﹣2t﹣3=4+4﹣3=5,
∴P(﹣2,5),Q(2,5);
②当Q(t﹣4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t﹣4)2+2(t﹣4)﹣3,解得t=2,
∴t2﹣2t﹣3=4﹣4﹣3=﹣3,
∴P(2,﹣3),Q(﹣2,﹣3),
综上可知存在满足条件的点P、Q,其坐标为P(﹣2,5),Q(2,5)或P(2,﹣3),Q(﹣2,﹣3).
[点评]
本题考查了"二次函数图象的交点问题   二次函数图象与几何变   二次函数综合应用   坐标与轴对称   ",属于"综合题",熟悉知识点是解题的关键