f
首页 | 客服

王老师初中数学

欢迎登录德优题库!

登录/注册 | 通知 | 退出
(1)

服务热线

400-816-0029

    自建题库,共享分红

德优题库QQ交流群

6219. (2017•漳州双语实验学校•一模) 如图,抛物线W:y=-x2+bx+c交x轴于点A(-3,0)和点B,交y轴于点C(0,3),顶点记为D.
(1)求抛物线W的函数表达式及顶点D的坐标.
(2)连接AC,若线段AC上有一点P,过点P作y轴的平行线交抛物线于点Q,求线段PQ长的最大值.
(3)在(2)中,当PQ的长最大时,将该抛物线平移,设平移后的抛物线为W′,抛物线W′的顶点记为D′,它的对称轴与x轴交于点E′.怎样平移才能使得以P、Q、D′、E′为顶点的四边形是菱形?
德优题库
[考点]
求二次函数的解析式   二次函数图象与几何变换   二次函数与平移问题   二次函数的动点问题   二次函数与线段最值问题   二次函数综合应用   勾股定理   菱形的性质   
[答案]
答案详见解析
[解析]
解:(1)把A(﹣3,0),C(0,3)代入y=﹣x2+bx+c,得
解得
故该抛物线的解析式为:y=﹣x2﹣2x+3.
(2)设直线AC的解析式为ykx+t
A(﹣3,0),C(0,3)代入,得
解得
即直线AC的解析式为yx+3.
P点坐标为(xx+3),(﹣3≤x≤0),则Q点坐标为(x,﹣x2﹣2x+3),
PQ=(﹣x2﹣2x+3)﹣(x+3)=﹣x2﹣3x=﹣(x+2+
∴当x=﹣时,PQ有最大值

(3)由(2)知,P(﹣.),Q(﹣),PQ
W'的解析式为y=﹣(xm2+n
E'(m,0),D'(mn),
D'E'=|n|
PE'=
∵以PQD′、E′为顶点的四边形是菱形,
D'E'=PE'=PQ
∴|n|=
n=±m=﹣±
∴抛物线W'的顶点坐标为(﹣+)或(﹣),
∵抛物线W的顶点坐标为(﹣1,4),
将抛物线W向右平移﹣++1=﹣+,再向下平移,得到以PQD′、E′为顶点的四边形是菱形,或将抛物线W向左平移﹣1+++,再向下平移,得到以PQD′、E′为顶点的四边形是菱形.
[点评]
本题考查了"二次函数图象与几何变   二次函数综合应用   勾股定理   菱形的性质   二次函数与平移问题   二次函数的动点问题   二次函数与线段最值问题   求二次函数的解析式   ",属于"综合题",熟悉知识点是解题的关键
2896. (2015•云南省•真题) 如图,在平面直角坐标系中,抛物线yax2+bx+ca≠0)与x轴相交于AB两点,与y轴相交于点C,直线ykx+nk≠0)经过BC两点,已知A(1,0),C(0,3),且BC=5.
(1)分别求直线BC和抛物线的解析式(关系式);
(2)在抛物线的对称轴上是否存在点P,使得以BCP三点为顶点的三角形是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.
                                                                                                                               
时间:2021-03-20 难度:4 相似度:1.5
6344. (2017•永春三中•模拟) 如图,直线AB与抛物线l:y=-x2+bx+c分别交于A(0,5),B(5,0)两点,这条抛物线的顶点为C,对称轴与直线AB交于点D.
(1)求抛物线l的函数表达式,并直接写出点C、D的坐标.
(2)将抛物线平移,平移后的抛物线顶点记为C′,对称轴与x轴的交点记为E,如果以C、D、C′、E为顶点的四边形是菱形,那么应将抛物线l怎样平移?为什么?
德优题库
时间:2021-03-20 难度:4 相似度:1.34
6244. (2017•晋江市南侨中学•模拟) 如图,在平面直角坐标系中,点O为坐标原点.已知:抛物线yax2+bx+3经过点P(1,4)和点Q(2,﹣3).
(1)试判断该抛物线与x轴交点的情况.
(2)平移这条抛物线,使平移后的抛物线经过点A(2,0),且与y轴交于点B,同时满足以AOB为顶点的三角形是等腰直角三角形.请你写出平移过程,并说明理由.
                                                                                                        
时间:2021-03-20 难度:4 相似度:1.3
19253. (2016•西工大附中•模拟) 如图,在平面直角坐标系中,抛物线W1y=﹣x2+6x﹣5与x轴交于AB两点,点C是该抛物线的顶点.
(1)若抛物线W1与抛物线W2关于直线x=﹣1对称,其中,点C与点F,点E与点B,点D与点A是对应点,求抛物线W2的表达式.
(2)连接BC,在直线x=﹣1上找一点H,使得△BCH周长最小,并求出点H的坐标.
(3)连接FD,点P是直线x=﹣1上一点,点Q是抛物线W1上一点,若以点DFPQ为顶点的四边形是平行四边形,请求出符合条件的点Q的坐标.

 
时间:2021-05-15 难度:4 相似度:1.17
23818. (2021•益新中学•五模) 已知二次函数y=x2+bx+c经过A、B两点,BC垂直x轴于点C,且A(-1,0),C(4,0),AC=BC.
(1)求抛物线的解析式;
(2)请画出抛物线的图象;
(3)点P是抛物线对称轴上一个动点,是否存在这样的点P,使三角形ABP为直角三角形?若存在,求出P点坐标;若不存在,请说明理由.
德优题库
时间:2022-03-17 难度:4 相似度:1.17
6319. (2017•漳州双语实验学校•模拟) 如图,在平面直角坐标系中,二次函数yax2+bx+c的图象经过点A(3,0),B(﹣1,0),C(0,﹣3),顶点为D
(1)求这个二次函数的解析式及顶点坐标;
(2)在y轴上找一点P(点P与点C不重合),使得∠APD=90°,求点P坐标;
(3)在(2)的条件下,将△APD沿直线AD翻折,得到△AQD,求点Q坐标.
                                                                                                                                           
时间:2021-03-20 难度:4 相似度:1.17
6168. (2014•德州市•真题) 如图,在平面直角坐标系中,已知点A的坐标是(4,0),并且OAOC=4OB,动点P在过ABC三点的抛物线上.
(1)求抛物线的解析式;
(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;
(3)过动点PPE垂直于y轴于点E,交直线AC于点D,过点Dx轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.
时间:2021-03-20 难度:4 相似度:1.17
474. (2017•陕西省•副题) 如图,已知抛物线Lyax2+bx+ca0)与x轴交于AB两点.与y轴交于C点.且A(﹣10),OBOC3OA
1)求抛物线L的函数表达式;
2)在抛物线L的对称轴上是否存在一点M,使△ACM周长最小?若存在,求出点M的坐标;若不存在,请说明理由.
3)连接ACBC,在抛物线L上是否存在一点N,使SABC2SOCN?若存在,求出点N的坐标;若不存在,请说明理由.
时间:2021-01-08 难度:5 相似度:1.13
20155. (2021•漳州双语实验学校•四模) 如图,抛物线C1yx2﹣2x﹣8与x轴交于点A和点B,与y轴交于点C.点O为坐标原点,DEF分别为OAOBOC的中点,过DEF三点的抛物线记为C2
(1)求抛物线C2的表达式,并判断抛物线C2是否可以由抛物线C1平移得到?
(2)点P为抛物线C1上任意一点,连接OP,取线段OP的中点Q.求证:点Q在抛物线C2上.
时间:2021-08-09 难度:4 相似度:1.13
6068. (2017•晋江市南侨中学•模拟) 24.(10分)如图1,抛物线y=ax2+bx+c(a≠0)的顶点坐标为(2,-1),并且与y轴交于点C(0,3),与x轴交于A、B两点.
(1)求抛物线的表达式;
(2)如图2,设抛物线的对称轴与直线BC交于点D,点E为直线BC上一动点,过点E作y轴的平行线EF,与抛物线交于点F,问是否存在点E,使得以D、E、F为顶点的三角形与△BCO相似?若存在,求出点E的坐标;若不存在,请说明理由.
德优题库
时间:2021-03-20 难度:4 相似度:1.13
1093. (2020•陕西省•真题) 如图,抛物线yx2+bx+c经过点(3,12)和(﹣2,﹣3),与两坐标轴的交点分别为ABC,它的对称轴为直线l
(1)求该抛物线的表达式;
(2)P是该抛物线上的点,过点Pl的垂线,垂足为DEl上的点.要使以PDE为顶点的三角形与△AOC全等,求满足条件的点P,点E的坐标.
                                                                                                                            
时间:2021-03-04 难度:4 相似度:1.13
1051. (2019•陕西省•真题) 在平面直角坐标系中,已知抛物线Lyax2+cax+c经过点A(﹣30)和点B0,﹣6),L关于原点O对称的抛物线为L′.
1)求抛物线L的表达式;
2)点P在抛物线L′上,且位于第一象限,过点PPDy轴,垂足为D.若△POD与△AOB相似,求符合条件的点P的坐标.
                                                                                                                           
时间:2021-03-01 难度:5 相似度:1.13
880. (2013•陕西省•真题) 在平面直角坐标系中,一个二次函数的图象经过点A(1,0)、B(3,0)两点.
(1)写出这个二次函数图象的对称轴;
(2)设这个二次函数图象的顶点为D,与y轴交于点C,它的对称轴与x轴交于点E,连接AC、DE和DB,当△AOC与△DEB相似时,求这个二次函数的表达式.
[提示:如果一个二次函数的图象与x轴的交点为A(x1,0)、B(x2,0),那么它的表达式可表示为y=a(x﹣x1)(x﹣x2)].
                                                                                           
 
时间:2021-02-05 难度:3 相似度:1.13
809. (2015•陕西省•真题) 在平面直角坐标系中,抛物线y=x2+5x+4的顶点为M,与x轴交于A,B两点,与y轴交于C点.
(1)求点A,B,C的坐标;
(2)求抛物线y=x2+5x+4关于坐标原点O对称的抛物线的函数表达式;
(3)设(2)中所求抛物线的顶点为M′,与x轴交于A′,B′两点,与y轴交于C′点,在以A,B,C,M,A′,B′,C′,M′这八个点中的四个点为顶点的平行四边形中,求其中一个不是菱形的平行四边形的面积.
时间:2021-02-03 难度:4 相似度:1.13
60. (2013•泉州市•真题) 已知抛物线yax﹣3)2+2经过点(1,﹣2).
(1)求a的值;
(2)若点Amy1)、Bny2)(mn<3)都在该抛物线上,试比较y1y2的大小.
时间:2020-12-26 难度:3 相似度:1.13
试题下载
试题内容
调用试题名称
共享人
唐老师
试题题型
解答题
试题难度
试题题源
2020*西工大*期末
下载次数
168次
下载金币
5德优币(当前结余18德优币)
温馨提示
该试题下载至自主题库后,下载、备课永久免费!
试卷设置
试卷名称
省市校区
阶段科目
年份卷型
选择类型
已选考点
在线训练
共享设置
共享金额
审核时间
2017-02-28 12:00
温馨提示
共享试题、试卷经平台审核通过后方可展示,并永久享用用户下载分红权!
共享声明
温馨提示
您的自主题库目前尚未开通该阶段科目,下载后除加入组卷和本地下载外,该科目所在的自主题库其他功能正常使用!
试题下载
文件格式
公式格式
纸张大小
答案类型
温馨提示
下载本地后,若出现文字与公式未居中显示!请全选中(Ctrl+A)-右键单击-段落-字体居中即可

word试卷生成中,请等待...

相同试题
视频讲解
温馨提示
视频讲解